1
|
Du J, Lin Z, Fu XH, Gu XR, Lu G, Hou J. Research progress of the chemokine/chemokine receptor axes in the oncobiology of multiple myeloma (MM). Cell Commun Signal 2024; 22:177. [PMID: 38475811 PMCID: PMC10935833 DOI: 10.1186/s12964-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zheng Lin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue-Hang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Ran Gu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, 257099, China.
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Gilchrist A, Echeverria SL. Targeting Chemokine Receptor CCR1 as a Potential Therapeutic Approach for Multiple Myeloma. Front Endocrinol (Lausanne) 2022; 13:846310. [PMID: 35399952 PMCID: PMC8991687 DOI: 10.3389/fendo.2022.846310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma is an incurable plasma B-cell malignancy with 5-year survival rates approximately 10-30% lower than other hematologic cancers. Treatment options include combination chemotherapy followed by autologous stem cell transplantation. However, not all patients are eligible for autologous stem cell transplantation, and current pharmacological agents are limited in their ability to reduce tumor burden and extend multiple myeloma remission times. The "chemokine network" is comprised of chemokines and their cognate receptors, and is a critical component of the normal bone microenvironment as well as the tumor microenvironment of multiple myeloma. Antagonists targeting chemokine-receptor 1 (CCR1) may provide a novel approach for treating multiple myeloma. In vitro CCR1 antagonists display a high degree of specificity, and in some cases signaling bias. In vivo studies have shown they can reduce tumor burden, minimize osteolytic bone damage, deter metastasis, and limit disease progression in multiple myeloma models. While multiple CCR1 antagonists have entered the drug pipeline, none have entered clinical trials for treatment of multiple myeloma. This review will discuss whether current CCR1 antagonists are a viable treatment option for multiple myeloma, and studies aimed at identifying which CCR1 antagonist(s) are most appropriate for this disease.
Collapse
Affiliation(s)
- Annette Gilchrist
- College of Pharmacy-Downers Grove, Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, United States
- *Correspondence: Annette Gilchrist,
| | | |
Collapse
|
3
|
Disease Severity and Quality of Life Measurements in Contact Dermatitis: A Systematic Review 2005–2015. Dermatitis 2016; 27:362-371. [DOI: 10.1097/der.0000000000000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Santella JB, Gardner DS, Duncia JV, Wu H, Dhar M, Cavallaro C, Tebben AJ, Carter PH, Barrish JC, Yarde M, Briceno SW, Cvijic ME, Grafstrom RR, Liu R, Patel SR, Watson AJ, Yang G, Rose AV, Vickery RD, Caceres-Cortes J, Caporuscio C, Camac DM, Khan JA, An Y, Foster WR, Davies P, Hynes J. Discovery of the CCR1 Antagonist, BMS-817399, for the Treatment of Rheumatoid Arthritis. J Med Chem 2014; 57:7550-64. [DOI: 10.1021/jm5003167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph B. Santella
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel S. Gardner
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John V. Duncia
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Wu
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murali Dhar
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Cullen Cavallaro
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Tebben
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Joel C. Barrish
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Melissa Yarde
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Stephanie W. Briceno
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - R. Robert Grafstrom
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Liu
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Sima R. Patel
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Watson
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Guchen Yang
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anne V. Rose
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Rodney D. Vickery
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Janet Caceres-Cortes
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Christian Caporuscio
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel M. Camac
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Javed A. Khan
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yongmi An
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - William R. Foster
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul Davies
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John Hynes
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
5
|
Kato T, Fujita Y, Nakane K, Mizutani K, Terazawa R, Ehara H, Kanimoto Y, Kojima T, Nozawa Y, Deguchi T, Ito M. CCR1/CCL5 interaction promotes invasion of taxane-resistant PC3 prostate cancer cells by increasing secretion of MMPs 2/9 and by activating ERK and Rac signaling. Cytokine 2013; 64:251-7. [PMID: 23876400 DOI: 10.1016/j.cyto.2013.06.313] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/16/2013] [Indexed: 12/22/2022]
Abstract
Castration-refractory prostate cancer (CRPC) is treated with taxane-based chemotherapy, but eventually becomes drug resistant. It is thus essential to identify novel therapeutic targets for taxane resistance in CRPC patients. We investigated the role of the chemokine (C-C motif) receptor 1 (CCR1) and its ligand, chemokine (C-C motif) ligand 5 (CCL5), in taxane-resistant CRPC using paclitaxel-resistant prostate cancer cells (PC3PR) established from PC3 cells. We found that the expression levels of CCR1 mRNA and protein were up-regulated in PC3PR cells compared to PC3 cells. In order to investigate the role of increased CCR1 in PC3PR cells, we stimulated cells with CCL5, one of the chemokine ligands of CCR1. In CCL5-stimulated PC3PR cells, siRNA-mediated knockdown of CCR1 expression reduced phosphorylation of ERK1/2 and Rac1/cdc42. Furthermore, CCR1 knockdown and MEK1/2 inhibition decreased CCL5-stimulated secretion of MMPs 2 and 9, which play important roles in cancer cell invasion and metastasis. In the Matrigel invasion assay, knockdown of CCR1 and inhibition of the ERK and Rac signaling pathways significantly decreased the number of invading cells. Finally, the serum CCL5 protein level as measured by ELISA was not different among the three groups of patients: those with negative prostate biopsy, those at initial diagnosis of prostate cancer, and those with taxane-resistant prostate cancer. These results demonstrated for the first time that the interaction of CCR1 with CCL5 caused by increased expression of CCR1 promotes invasion of PC3PR cells by increasing secretion of MMPs 2 and 9 and by activating ERK and Rac signaling. Our findings suggest that CCR1 could be a novel therapeutic target for taxane-resistant CRPC.
Collapse
Affiliation(s)
- Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gardner DS, Santella JB, Duncia JV, Carter PH, Dhar T, Wu H, Guo W, Cavallaro C, Van Kirk K, Yarde M, Briceno SW, Robert Grafstrom R, Liu R, Patel SR, Tebben AJ, Camac D, Khan J, Watson A, Yang G, Rose A, Foster WR, Cvijic ME, Davies P, Hynes J. The discovery of BMS-457, a potent and selective CCR1 antagonist. Bioorg Med Chem Lett 2013; 23:3833-40. [DOI: 10.1016/j.bmcl.2013.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
|
7
|
Tak PP, Balanescu A, Tseluyko V, Bojin S, Drescher E, Dairaghi D, Miao S, Marchesin V, Jaen J, Schall TJ, Bekker P. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann Rheum Dis 2013; 72:337-44. [PMID: 22589376 DOI: 10.1136/annrheumdis-2011-201605] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES CCX354-C is a specific, orally administered antagonist of the C-C chemokine receptor 1, which regulates migration of monocytes and macrophages to synovial tissue. This clinical trial evaluated the safety and efficacy of CCX354-C in patients with rheumatoid arthritis (RA). METHODS CARAT-2 is a 12-week double-blind, randomised, placebo controlled trial in 160 patients with RA, with 68 tender joint count and 66 swollen joint count ≥8 and C-reactive protein (CRP) >5 mg/l, despite being on methotrexate for at least 16 weeks. Subjects received placebo, CCX354-C 100 mg twice daily, or 200 mg once daily for 12 weeks. Endpoints included safety (primary) and RA disease activity assessments based on American College of Rheumatology (ACR) response, and changes in 28-joint disease activity score-CRP, individual ACR components, as well as soluble bone turnover markers. RESULTS CCX354-C was generally well tolerated by study subjects. The ACR20 response at week 12 was 39% in the placebo group, 43% in the 100 mg twice daily group (difference and 95% CI compared with placebo, 4.5 (-14.1 to 23.1); p=0.62) and 52% in the 200 mg once daily group (13.0 (-5.8 to 31.8); p=0.17) in the intention-to-treat population, and 30% in the placebo group, 44% in the 100 mg twice daily group (14.4 (-5.9 to 34.8); p=0.17), and 56% in the 200 mg once daily group (25.8 (5.3 to 46.4); p=0.01) in the prespecified population of patients satisfying CRP and joint count eligibility criteria at the screening and day 1 (predose) visits. CONCLUSIONS CCX354-C exhibited a good safety and tolerability profile and evidence of clinical activity in RA.
Collapse
Affiliation(s)
- Paul P Tak
- Clinical Immunology and Rheumatology, F4-105, AMC/University of Amsterdam, Amsterdam 1100 DD, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cavallaro CL, Briceno S, Chen J, Cvijic ME, Davies P, Hynes J, Liu RQ, Mandlekar S, Rose AV, Tebben AJ, Van Kirk K, Watson A, Wu H, Yang G, Carter PH. Discovery and Lead Optimization of a Novel Series of CC Chemokine Receptor 1 (CCR1)-Selective Piperidine Antagonists via Parallel Synthesis. J Med Chem 2012; 55:9643-53. [DOI: 10.1021/jm300896d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Cullen L. Cavallaro
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Stephanie Briceno
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Jing Chen
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Paul Davies
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - John Hynes
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Rui-Qin Liu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Sandhya Mandlekar
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Anne V. Rose
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Andrew J. Tebben
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Katy Van Kirk
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Andrew Watson
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Hong Wu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Guchen Yang
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Percy H. Carter
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| |
Collapse
|
9
|
Abstract
The chemokine receptor CCR1 has been the target of intensive research for nearly two decades. Small-molecule antagonists were first reported in 1998 and, since then, many inhibitors for CCR1 have been brought forth. Yet, with all the money and time spent, to date, no small-molecule antagonists have successfully moved past Phase II clinical trials. With the current advancement of CCR1 antagonists by Bristol-Myers Squibb and Chemocentrix, there has been renewed interest. In this review, we present an overview of CCR1, its activating ligands, methods of signaling, and downstream response. We discuss studies that indicate CCR1 plays an important role in multiple myeloma and the underlying molecular mechanisms. Finally, we present an overview of the clinical and preclinical compounds for CCR1. We address individual structures, discuss their pharmacological précis, and summarize the published evidence to assess their value for use in multiple myeloma.
Collapse
|
10
|
Pharmacokinetic and pharmacodynamic evaluation of the novel CCR1 antagonist CCX354 in healthy human subjects: implications for selection of clinical dose. Clin Pharmacol Ther 2011; 89:726-34. [PMID: 21451509 DOI: 10.1038/clpt.2011.33] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The safety and pharmacokinetic (PK)/pharmacodynamic (PD) profile of the novel CCR1 antagonist CCX354 was evaluated in double-blind, placebo-controlled, single- and multiple-dose phase I studies (1-300 mg/day oral doses). CCX354 was well tolerated and displayed a linear dose-exposure profile, with half-life approaching 7 h at the 300-mg dose. The extent of CCR1 receptor blockade on blood monocytes, which correlated well with plasma concentrations of the drug, was assessed using fluorescently labeled CCL3 binding in whole blood from phase I subjects. High levels of receptor coverage at the 12-h time point were achieved after a single dose of 100 mg CCX354. Preclinical studies indicate that effective blockade of inflammatory cell infiltration into tissues requires ≥90% CCR1 inhibition on blood leukocytes at all times. The comparison of the properties of CCX354 with those published for other CCR1 antagonists has informed the dose selection for ongoing clinical development of CCX354 in rheumatoid arthritis (RA).
Collapse
|
11
|
Sharma R, Sharma PR, Kim YC, Leitinger N, Lee JK, Fu SM, Ju ST. IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 186:1268-78. [PMID: 21169543 DOI: 10.4049/jimmunol.1002677] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Scurfy (Sf) mice bear a mutation in the Foxp3 transcription factor, lack regulatory T cells (Treg), develop multiorgan inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. “Sf mice lacking the Il2 gene (Sf.Il2–/–), despite being devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver remained [corrected]. Genome-wide microarray analysis revealed hundreds of genes that were differentially regulated among Sf, Sf.Il2(-/-), and B6 CD4(+) T cells, but the most significant changes were those encoding receptors for trafficking/chemotaxis/retention and cytokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent "organ-specific" manner through two novel mechanisms: by regulating the expression of genes encoding a variety of receptors for T cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and cytokine production. Thus, IL-2 is potentially a master regulator for multiorgan inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Carter PH, Hynes J. N-aryl pyrazoles, indazoles and azaindazoles as antagonists of CC chemokine receptor 1: patent cooperation treaty applications WO2010/036632, WO2009/134666 and WO2009/137338. Expert Opin Ther Pat 2010; 20:1609-18. [DOI: 10.1517/13543776.2010.518144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|