1
|
Kopsida M, Liu N, Kotti A, Wang J, Jensen L, Jothimani G, Hildesjo C, Haapaniemi S, Zhong W, Pathak S, Sun XF. RhoB expression associated with chemotherapy response and prognosis in colorectal cancer. Cancer Cell Int 2024; 24:75. [PMID: 38355625 PMCID: PMC10867990 DOI: 10.1186/s12935-024-03236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/20/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE To examine the role of RhoB expression in relation to chemotherapy response, clinical outcomes and associated signaling pathways in colorectal cancer patients. MATERIALS AND METHODS The study included 5 colon cancer cell lines, zebrafish embryos and 260 colorectal cancer patients treated with 5-fluorouracil (5-FU) and oxaliplatin (OXL). The methods consisted of CRISPR/Cas9, reactive oxygen species (ROS), caspase-3 activity, autophagy flux, in-silico RNA sequencing and immunohistochemistry. Gene expression analysis and pathway analysis were conducted using RNA-seq data. RESULTS All cancer lines tested, including SW480, SW480-KO13 (RhoB knockout), SW480-KO55 (RhoB knockout), HCT116 and HCT116-OE (RhoB overexpressed), exhibited cytotoxicity to 5-FU and OXL. RhoB knockout cell lines demonstrated significantly reduced migration compared to the control cell lines. Furthermore, RhoB played a role in caspase-3-dependent apoptosis, regulation of ROS production and autophagic flux. The mRNA sequencing data indicated lower expression levels of oncogenes in RhoB knockout cell lines. The zebrafish model bearing SW480-KO showed a light trend toward tumor regression. RhoB expression by immunohistochemistry in patients was increased from normal mucosa to tumor samples. In patients who received chemotherapy, high RhoB expression was related to worse survival compared to low RhoB expression. Furthermore, the molecular docking analysis revealed that OXL had a higher binding affinity for RhoB than 5-FU, with a binding affinity of -7.8 kcal/mol and HADDOCK predicted molecular interactions between RhoB and caspase 3 protein. Gene-set enrichment analysis supported these findings, showing that enrichment of DNA damage response pathway and p53 signaling in RhoB overexpression treatment group, while the RhoB knockout treatment group exhibited enrichment in the negative regulation pathway of cell migration. CONCLUSION RhoB was negatively associated with chemotherapy response and survival in colorectal cancers. Therefore, RhoB inhibition may enhance chemotherapeutic responses and patient survival.
Collapse
Affiliation(s)
- Maria Kopsida
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Na Liu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Angeliki Kotti
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jing Wang
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Camilla Hildesjo
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Staffan Haapaniemi
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, Norrköping, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India.
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015; 90:1179-96. [PMID: 25410793 PMCID: PMC4437968 DOI: 10.1111/brv.12151] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
The hair follicle (HF) represents a prototypic ectodermal-mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem-cell-rich mini-organs is that they undergo life-long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy-efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro-environment (including its stem cell niche) as well as in their external tissue macro-environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub-stages: early 'refractory' and late 'competent' telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response-signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro-regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active 'regenerative mode' of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.
Collapse
Affiliation(s)
- Mikhail Geyfman
- Department of Ophthalmology, University of California, Irvine, CA 92697, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Labouratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, CA 92697, USA
- Department of Medicine, University of California Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Adly MA, Assaf HA, Abdel-Rady SF, Ahmed NS, Hussein MRA. Immunohistochemical Analysis of GDNF and Its Cognate Receptor GFRα-1 Protein Expression in Vitiliginous Skin Lesions. J Cutan Med Surg 2015; 20:130-4. [PMID: 26337382 DOI: 10.1177/1203475415601828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vitiligo is an idiopathic skin disease, characterized by circumscribed white macules or patches on the skin due to loss of the functional melanocytes. Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are distal members of the transforming growth factor-β superfamily. GDNF, produced by the basal cell keratinocytes, is involved in the migration and differentiation of the melanocytes from the neural crest to the epidermis. This study examines the hypothesis that expression of GDNF protein and its cognate receptor GFRα-1 protein is altered in vitiliginous skin. PATIENTS AND METHODS To test our hypothesis, we examined the expression patterns of these proteins in vitiliginous and corresponding healthy (control) skin biopsies (20 specimens each) using immunoperoxidase staining techniques. RESULTS We found variations between the vitiliginous skin and healthy skin. In healthy skin, the expression of GDNF and GFRα-1 proteins was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In contrast, weak expression of GDNF protein was observed in all epidermal layers of vitiliginous skin. GFRα-1 protein expression was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In both healthy skin and vitiliginous skin, the expression of GDNF and GFRα-1 proteins was strong in the adnexal structures. CONCLUSIONS We report, for the first time, decreased expression of GDNF proteins in the epidermal keratinocytes of vitiliginous skin. Our findings suggest possible pathogenetic roles for these proteins in the development of vitiligo. The clinical ramifications of these observations mandate further investigations.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hanan A Assaf
- Department of Dermatology and Venereology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Shaima'a F Abdel-Rady
- Department of Dermatology and Venereology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Nagwa Sayed Ahmed
- Department of Biochemistry, Faculty of Medicine, Sohag University, Egypt
| | | |
Collapse
|
4
|
Nagi FM, Omar AAM, Mostafa MG, Mohammed EA, Abd-Elwahed Hussein MR. The expression pattern of Von Hippel-Lindau tumor suppressor protein, MET proto-oncogene, and TFE3 transcription factor oncoprotein in renal cell carcinoma in Upper Egypt. Ultrastruct Pathol 2011; 35:79-86. [PMID: 21299348 DOI: 10.3109/01913123.2010.544844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Genetic alterations in renal cell carcinoma (RCC) involve tumor suppressor genes such as Von Hippel-Lindau (VHL); proto-oncogenes such as MET and transcription factors such as TFE3 oncoprotein. AIM To examine the clinicopathologic features and the expression of some oncogenic molecules in various RCCs in patients from Upper Egypt. MATERIALS AND METHODS The authors examined the expression pattern of pVHL; MET; and TFE3 proteins in 59 RCC using immunoperoxidase staining methods. The study group consisted of clear cell RCCs (CRCC); papillary RCCs type 1 (PRCC1); papillary RCCs type 2 (PRCC2); Xp11-2 translocation RCCs (XP11.2RCC); chromophobe RCCs (ChRCC); and sarcomatoid RCCs (SRCC). RESULTS Variations were found in the expression of these molecules in the different types of RCCs. The mean age of RCCs among Egyptians was 52.70 ± 1.73 years; with male sex predominance. Mass lesion; pain; and hematuria were the main presenting features. Metastatic disease was more frequent with CRCC variant. pVHL expression was strong in PCRCC2; Xp11.2RCC; and ChRCC; moderate in CRCC; and weak in both PRCC1 and sarcomatoid RCC. MET protein expression was moderate in Xp11.2RCC; PRCC1; PRCC2; and sarcomatoid RCC. TFE3 protein expression was strong in Xp11.2RCC and PRCC2 variants. The expression was moderate in PRCC1; CRCC; ChRCC; and sarcomatoid RCC. Positive correlation was found in the expression of the different proteins (pVHL; MET; and TFE3) and some histological features (tumor grade; inflammation; necrosis and metastasis) and the presence of metastasis and some histological features (inflammation and/or necrosis). CONCLUSIONS This study provides the first indication about the clinicopathologic features of RCCs in Upper Egypt. The variable expression of these molecules in the different variants of RCC suggests that several oncogenic pathways are operational in their development.
Collapse
Affiliation(s)
- Fayed Mohamad Nagi
- Pathology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | | | | | | | | |
Collapse
|