1
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Ochoa PT, Casiano CA. The Emerging Roles of the Stress Epigenetic Reader LEDGF/p75 in Cancer Biology and Therapy Resistance: Mechanisms and Targeting Opportunities. Cancers (Basel) 2024; 16:3957. [PMID: 39682146 DOI: 10.3390/cancers16233957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The lens epithelium derived growth factor of 75 kD (LEDGF/p75) is a transcription co-activator and epigenetic reader that has emerged as a stress oncoprotein in multiple human cancers. Growing evidence indicates that it promotes tumor cell survival against certain therapeutic drugs. The amino (N)-terminal region of LEDGF/p75 contains a PWWP domain that reads methylated histone marks, critical for recognizing transcriptionally active chromatin sites. Its carboxyl (C)-terminus has an integrase binding domain (IBD) that serves as the binding site for the HIV-1 integrase and multiple oncogenic transcription factors. Acting as hubs for protein-protein interactions, both domains facilitate the tethering of oncogenic transcription factors and regulators to active chromatin to regulate mRNA splicing, promote DNA repair, and enhance the expression of stress and cancer-related genes that contribute to tumor cell aggressiveness and chemoresistance. This review summarizes our current knowledge of the emerging roles of LEDGF/p75 in cancer biology and therapy resistance and discusses its potential as a novel oncotherapeutic target in combinatorial treatments.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Cancer Center, Loma Linda University Health, Loma Linda, CA 92350, USA
| |
Collapse
|
2
|
Xue S, Chen JQ, Wang T, Zhang LN, Chen M, Sun HP, Cao XY. Case report: NUP98::LEDGF fusion gene drives malignant hematological tumor with mixed immunological phenotype. Front Oncol 2024; 14:1396655. [PMID: 39301554 PMCID: PMC11410684 DOI: 10.3389/fonc.2024.1396655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
This is the first report of NUP98::LEDGF positive malignant hematological tumor expressing T cell and myeloid lineage antigens. Patients carrying this fusion gene have a high relapse rate and a poor prognosis, allo-HSCT may be an option to cure this disease. This patient underwent allo-HSCT, a relapse occurred three months post-transplantation. Subsequent screening at our hospital confirmed the presence of the NUP98::LEDGF fusion gene, salvage therapy was administered, followed by a successful second allo-HSCT. Furthermore, we included eight previously reported cases from the literature for analysis and discuss.
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Jia-Qi Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Li-Na Zhang
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Man Chen
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Hui-Peng Sun
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
| |
Collapse
|
3
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
5
|
Saha S, Murmu KC, Biswas M, Chakraborty S, Basu J, Madhulika S, Kolapalli SP, Chauhan S, Sengupta A, Prasad P. Transcriptomic Analysis Identifies RNA Binding Proteins as Putative Regulators of Myelopoiesis and Leukemia. Front Oncol 2019; 9:692. [PMID: 31448224 PMCID: PMC6691814 DOI: 10.3389/fonc.2019.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common and aggressive hematological malignancy. Acquisition of heterogeneous genetic aberrations and epigenetic dysregulation lead to the transformation of hematopoietic stem cells (HSC) into leukemic stem cells (LSC), which subsequently gives rise to immature blast cells and a leukemic phenotype. LSCs are responsible for disease relapse as current chemotherapeutic regimens are not able to completely eradicate these cellular sub-populations. Therefore, it is critical to improve upon the existing knowledge of LSC specific markers, which would allow for specific targeting of these cells more effectively allowing for their sustained eradication from the cellular milieu. Although significant milestones in decoding the aberrant transcriptional network of various cancers, including leukemia, have been achieved, studies on the involvement of post-transcriptional gene regulation (PTGR) in disease progression are beginning to unfold. RNA binding proteins (RBPs) are key players in mediating PTGR and they regulate the intracellular fate of individual transcripts, from their biogenesis to RNA metabolism, via interactions with RNA binding domains (RBDs). In this study, we have used an integrative approach to systematically profile RBP expression and identify key regulatory RBPs involved in normal myeloid development and AML. We have analyzed RNA-seq datasets (GSE74246) of HSCs, common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), monocytes, LSCs, and blasts. We observed that normal and leukemic cells can be distinguished on the basis of RBP expression, which is indicative of their ability to define cellular identity, similar to transcription factors. We identified that distinctly co-expressing modules of RBPs and their subclasses were enriched in hematopoietic stem/progenitor (HSPCs) and differentiated monocytes. We detected expression of DZIP3, an E3 ubiquitin ligase, in HSPCs, knockdown of which promotes monocytic differentiation in cell line model. We identified co-expression modules of RBP genes in LSCs and among these, distinct modules of RBP genes with high and low expression. The expression of several AML-specific RBPs were also validated by quantitative polymerase chain reaction. Network analysis identified densely connected hubs of ribosomal RBP genes (rRBPs) with low expression in LSCs, suggesting the dependency of LSCs on altered ribosome dynamics. In conclusion, our systematic analysis elucidates the RBP transcriptomic landscape in normal and malignant myelopoiesis, and highlights the functional consequences that may result from perturbation of RBP gene expression in these cellular landscapes.
Collapse
Affiliation(s)
- Subha Saha
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna Chandra Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Mayukh Biswas
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Sohini Chakraborty
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jhinuk Basu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Swati Madhulika
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | | | - Santosh Chauhan
- Cell Biology and Infectious Disease Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Amitava Sengupta
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
6
|
Gallego Hernanz MP, Torregrosa Diaz JM, Sorel N, Bobin A, Dindinaud E, Bouyer S, Desmier D, Brizard F, Leleu X, Maillard N, Chomel JC. Long-term molecular remission in a patient with acute myeloid leukemia harboring a new NUP98-LEDGF rearrangement. Cancer Med 2019; 8:1765-1770. [PMID: 30848074 PMCID: PMC6488106 DOI: 10.1002/cam4.2051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022] Open
Abstract
A large variety of molecular rearrangements of the NUP98 gene have been described in the past decades (n = 72), involving fusion partners coding for different transcription factors, chromatin modifying enzymes, as well as various cytosolic proteins. Here, we report the case of an AML-M2 patient with a variant NUP98-LEDGF/PSIP1 gene fusion (N9-L10). In this patient, three different NUP98-LEDGF fusion mRNAs were characterized due to alternative splicing in LEDGF exon 11. Targeted high-throughput sequencing revealed the presence of IDH1, SRSF2, and WT1 additional pathogenic mutations. To improve the therapeutic monitoring, quantification of NUP98-LEDGF mRNA by real-time PCR was developed. Because of poor response to conventional chemotherapy, allogeneic stem cell transplantation was performed, followed by 20 cycles of azacitidine-based preemptive treatment of relapse. More than 31 months after diagnosis, corresponding to 25 months post SCT and 4 months after the last cycle of azacytidine, the patient is in complete molecular remission (undetectable NUP98-LEDGF mRNA transcripts). This study highlights the considerable variability in breakpoint location within both NUP98 and LEDGF, associated with alternative splicing affecting LEDGF. It also emphasizes the need to fully characterize the breakpoints within the two genes and the identification of all fusion mRNAs, particularly for the development of a molecular monitoring assay. All these data seem critical for the optimal management of NUP98-LEDGF + hematological malignancies commonly associated with a poor prognosis.
Collapse
Affiliation(s)
| | | | - Nathalie Sorel
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - Arthur Bobin
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | - Elodie Dindinaud
- CHU de Poitiers, Service d'Hématologie Biologique, Poitiers, France
| | - Sabrina Bouyer
- CHU de Poitiers, Service d'Hématologie Biologique, Poitiers, France
| | - Deborah Desmier
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | | | - Xavier Leleu
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France.,INSERM, CIC-P, Poitiers, France
| | - Natacha Maillard
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | | |
Collapse
|
7
|
Aypar U, Smoley SA, Pitel BA, Pearce KE, Zenka RM, Vasmatzis G, Johnson SH, Smadbeck JB, Peterson JF, Geiersbach KB, Van Dyke DL, Thorland EC, Jenkins RB, Ketterling RP, Greipp PT, Kearney HM, Hoppman NL, Baughn LB. Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur J Haematol 2018; 102:87-96. [PMID: 30270457 PMCID: PMC7379948 DOI: 10.1111/ejh.13179] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints. METHOD We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML. RESULTS Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed. CONCLUSION Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Umut Aypar
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Stephanie A Smoley
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Kathryn E Pearce
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Roman M Zenka
- Bioinformatics Systems, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Jess F Peterson
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Katherine B Geiersbach
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Daniel L Van Dyke
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Erik C Thorland
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Hutton M Kearney
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Nicole L Hoppman
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Pradeepa MM, Grimes GR, Taylor GCA, Sutherland HG, Bickmore WA. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins. Nucleic Acids Res 2014; 42:9021-32. [PMID: 25056311 PMCID: PMC4132756 DOI: 10.1093/nar/gku647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1−/− cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors.
Collapse
Affiliation(s)
- Madapura M Pradeepa
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Gillian C A Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Heidi G Sutherland
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
9
|
Takeda A, Yaseen NR. Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 2014; 27:3-10. [PMID: 24657637 DOI: 10.1016/j.semcancer.2014.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
Hematologic malignancies are often associated with chromosomal rearrangements that lead to the expression of chimeric fusion proteins. Rearrangements of the genes encoding two nucleoporins, NUP98 and NUP214, have been implicated in the pathogenesis of several types of hematologic malignancies, particularly acute myeloid leukemia. NUP98 rearrangements result in fusion of an N-terminal portion of NUP98 to one of numerous proteins. These rearrangements often follow treatment with topoisomerase II inhibitors and tend to occur in younger patients. They have been shown to induce leukemia in mice and to enhance proliferation and disrupt differentiation in primary human hematopoietic precursors. NUP214 has only a few fusion partners. DEK-NUP214 is the most common NUP214 fusion in AML; it tends to occur in younger patients and is usually associated with FLT3 internal tandem duplications. The leukemogenic activity of NUP214 fusions is less well characterized. Normal nucleoporins, including NUP98 and NUP214, have important functions in nucleocytoplasmic transport, transcription, and mitosis. These functions and their disruptions by oncogenic nucleoporin fusions are discussed.
Collapse
Affiliation(s)
- Akiko Takeda
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| | - Nabeel R Yaseen
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| |
Collapse
|
10
|
Gorello P, Nofrini V, Brandimarte L, Pierini V, Crescenzi B, Nozza F, Daniele G, Storlazzi CT, Di Giacomo D, Matteucci C, La Starza R, Mecucci C. Inv(11)(p15q22)/NUP98-DDX10 fusion and isoforms in a new case of de novo acute myeloid leukemia. Cancer Genet 2013; 206:92-6. [PMID: 23522748 DOI: 10.1016/j.cancergen.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 01/31/2023]
Abstract
We set up a diagnostic double-color double-fusion fluorescence in situ hybridization (DCDF-FISH) assay to investigate a case of a de novo acute myeloid leukemia (AML)-M4 bearing an inv(11)(p15q22). DCDF-FISH detected the NUP98-DDX10 rearrangement as two fusion signals, at the short and the long arms of the inv(11). Reverse transcription-polymerase chain reaction (RT-PCR) and cloning experiments confirmed the NUP98-DDX10 fusion and identified two splicing fusion isoforms: the known "type II fusion," originating from the fusion of NUP98 exon 14 to DDX10 exon 7 and a new in-frame fusion transcript between NUP98 exon 15 and DDX10 exon 7, which we termed "type III fusion."
Collapse
Affiliation(s)
- Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thol F, Kölking B, Hollink IHI, Damm F, van den Heuvel-Eibrink MM, Michel Zwaan C, Bug G, Ottmann O, Wagner K, Morgan M, Hofmann WK, Göhring G, Schlegelberger B, Krauter J, Ganser A, Heuser M. Analysis of NUP98/NSD1 translocations in adult AML and MDS patients. Leukemia 2012; 27:750-4. [DOI: 10.1038/leu.2012.249] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|