1
|
Harding CF, Liao D, Persaud R, DeStefano RA, Page KG, Stalbow LL, Roa T, Ford JC, Goman KD, Pytte CL. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav Brain Res 2023; 442:114294. [PMID: 36638914 PMCID: PMC10460635 DOI: 10.1016/j.bbr.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1β-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.
Collapse
Affiliation(s)
- Cheryl F Harding
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - David Liao
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA
| | - Ramona Persaud
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Richard A DeStefano
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kimberly G Page
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Lauren L Stalbow
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| | - Tina Roa
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jordan C Ford
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ksenia D Goman
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Carolyn L Pytte
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| |
Collapse
|
2
|
Viegas C, Almeida B, Aranha Caetano L, Afanou A, Straumfors A, Veríssimo C, Gonçalves P, Sabino R. Algorithm to assess the presence of Aspergillus fumigatus resistant strains: The case of Norwegian sawmills. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:963-971. [PMID: 32814444 DOI: 10.1080/09603123.2020.1810210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/11/2020] [Indexed: 05/24/2023]
Abstract
Association between selection pressure caused by the use of azole fungicides in sawmills and the development of fungal resistance has been described. The aim of this study was to implement an algorithm to assess the presence of Aspergillus section Fumigati resistant strains in sawmills.Eighty-six full-shift inhalable dust samples were collected from eleven industrial sawmills in Norway. Different culture media were used and molecular identification to species level in Aspergillus section Fumigati was done by calmodulin sequencing and TR34/L98H and TR46/Y121F/T289A mutations were screened by real-time PCR assay and confirmed by cyp51A sequencing. Six Fumigati isolates were identified as A. fumigatus sensu stricto and two of these grew on azole-supplemented media and were further analyzed by real-time PCR. One was confirmed to be a TR34/L98H mutant.The obtained results reinforce the need to assess the presence of A. fumigatus sensu stricto resistant isolates at other workplaces with fungicide pressure.
Collapse
Affiliation(s)
- Carla Viegas
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA De Lisboa Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Beatriz Almeida
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
| | - Liliana Aranha Caetano
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
- Research Institute for Medicines (Imed.ulisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Anani Afanou
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Paulo Gonçalves
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- European Centre for Disease Prevention and Control, European Programme for Public Health Microbiology Training (EUPHEM), Stockholm, Sweden
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Faculdade De Medicina Da, Instituto De Saúde Ambiental, Universidade De Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Khan M, Muhmood K, Noureen S, Mahmood HZ, Amir-Ud-Din R. Epidemiology of respiratory diseases and associated factors among female textile workers in Pakistan. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022; 28:184-198. [PMID: 32602797 DOI: 10.1080/10803548.2020.1751973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective. The study aimed to estimate the prevalence of byssinosis and other respiratory symptoms among women textile workers and the associated risk factors in 18 spinning mills of Faisalabad and Lahore districts of Punjab, Pakistan. Method. In this case-control study of 1054 female workers, we used the dose-response function to measure the association between dust level and respiratory disorders in cotton textile workers. Results. Working overtime and long working hours per week are significantly associated with self-reported symptoms of byssinosis. Women's age, marital status and wages were significantly associated with mitigating actions (seeing the doctor), while the education of the women was significantly associated with averting action (use of a mask). Conclusion. Regulating working hours and ensuring employees' compliance with the safety standards are expected to mitigate the health problems of female workers.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Economics, COMSATS University Islamabad, Pakistan
| | - Kashif Muhmood
- Department of Economics, COMSATS University Islamabad, Pakistan
| | | | | | | |
Collapse
|
4
|
Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction. Brain Behav Immun 2020; 87:218-228. [PMID: 31751617 PMCID: PMC7231651 DOI: 10.1016/j.bbi.2019.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 01/01/2023] Open
Abstract
Individuals living or working in moldy buildings complain of a variety of health problems including pain, fatigue, increased anxiety, depression, and cognitive deficits. The ability of mold to cause such symptoms is controversial since no published research has examined the effects of controlled mold exposure on brain function or proposed a plausible mechanism of action. Patient symptoms following mold exposure are indistinguishable from those caused by innate immune activation following bacterial or viral exposure. We tested the hypothesis that repeated, quantified doses of both toxic and nontoxic mold stimuli would cause innate immune activation with concomitant neural effects and cognitive, emotional, and behavioral symptoms. We intranasally administered either 1) intact, toxic Stachybotrys spores; 2) extracted, nontoxic Stachybotrys spores; or 3) saline vehicle to mice. As predicted, intact spores increased interleukin-1β immunoreactivity in the hippocampus. Both spore types decreased neurogenesis and caused striking contextual memory deficits in young mice, while decreasing pain thresholds and enhancing auditory-cued memory in older mice. Nontoxic spores also increased anxiety-like behavior. Levels of hippocampal immune activation correlated with decreased neurogenesis, contextual memory deficits, and/or enhanced auditory-cued fear memory. Innate-immune activation may explain how both toxic mold and nontoxic mold skeletal elements caused cognitive and emotional dysfunction.
Collapse
|
5
|
Holme JA, Øya E, Afanou AKJ, Øvrevik J, Eduard W. Characterization and pro-inflammatory potential of indoor mold particles. INDOOR AIR 2020; 30:662-681. [PMID: 32078193 DOI: 10.1111/ina.12656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
A number of epidemiological studies find an association between indoor air dampness and respiratory health effects. This is often suggested to be linked to enhanced mold growth. However, the role of mold is obviously difficult to disentangle from other dampness-related exposure including microbes as well as non-biological particles and chemical pollutants. The association may partly be due to visible mycelial growth and a characteristic musty smell of mold. Thus, the potential role of mold exposure should be further explored by evaluating information from experimental studies elucidating possible mechanistic links. Such studies show that exposure to spores and hyphal fragments may act as allergens and pro-inflammatory mediators and that they may damage airways by the production of toxins, enzymes, and volatile organic compounds. In the present review, we hypothesize that continuous exposure to mold particles may result in chronic low-grade pro-inflammatory responses contributing to respiratory diseases. We summarize some of the main methods for detection and characterization of fungal aerosols and highlight in vitro research elucidating how molds may induce toxicity and pro-inflammatory reactions in human cell models relevant for airway exposure. Data suggest that the fraction of fungal hyphal fragments in indoor air is much higher than that of airborne spores, and the hyphal fragments often have a higher pro-inflammatory potential. Thus, hyphal fragments of prevalent mold species with strong pro-inflammatory potential may be particularly relevant candidates for respiratory diseases associated with damp/mold-contaminated indoor air. Future studies linking of indoor air dampness with health effects should assess the toxicity and pro-inflammatory potential of indoor air particulate matter and combined this information with a better characterization of biological components including hyphal fragments from both pathogenic and non-pathogenic mold species. Such studies may increase our understanding of the potential role of mold exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Øya
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medicines Access, Norwegian Medicines Agency, Oslo, Norway
| | - Anani K J Afanou
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wijnand Eduard
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
6
|
Aktas YD, Reeslev M, Altamirano H, May N, D’Ayala D. Normal background levels of air and surface mould reserve in English residential building stock: a preliminary study towards benchmarks based on NAHA measurements. UCL OPEN ENVIRONMENT 2020; 2:e005. [PMID: 37229291 PMCID: PMC10171414 DOI: 10.14324/111.444/ucloe.000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/13/2020] [Indexed: 05/27/2023]
Abstract
This paper reports results obtained from a surface (both visually clean and dirty/dusty surfaces) and active (aggressive or activated) air testing scheme on 140 residential rooms in England, without visible water damage or mould growth, along with a few rooms with visible mould growth/water damage tested for comparison purposes. The aim was to establish normal background levels of mould in non-water-damaged interiors to benchmark a 'normal' indoor environment, and in turn when there is a need for further investigation, and, possibly, remediation. Air and surface mould was quantified based on the activity of β-N-acetylhexosaminidase (EC 3.2.1.52; NAHA). The obtained readings showed a log-normal distribution. Ninety-eight percent of the samples obtained from visually clean surfaces were equal to or less than 25 relative fluorescence units (RFU), which is suggested to be the higher bound for the range which can be used as a success criterion for surface cleaning/remediation. Of samples obtained from visually dirty/dusty surfaces, around 98% were below 450 RFU, which is suggested to define the lower-bound for abnormally high levels of mould, rare even on dirty/dusty surfaces. Similarly, around 98% of the air samples were found to have 1700 RFU or below. Values above 1700 RFU are therefore deemed unlikely in a non-problem indoor environment and can be indicative of a possible problem inducing mould growth. The samples with values below 1700 were further divided into three proposed sub-categories. Finally, the obtained RFU values and the suggested benchmarks were compared to those obtained from 17 non-residential indoor environments tested previously in Copenhagen, and the benchmarks that are currently used in Danish national standards, and they were both found to be highly congruent, suggesting that local climate regimes and room functions might not be as influential on indoor mould levels as commonly thought, or that the nuances between England and Denmark in terms of these factors are not strong enough to lead to sizable changes in the typical indoor mould levels in these countries' building stocks.
Collapse
Affiliation(s)
- Yasemin Didem Aktas
- University College London (UCL), Department of Civil, Environmental and Geomatic Engineering (CEGE), Epicentre Research Group, London WC1E 6DE, UK
- UK Centre for Moisture in Buildings (UKCMB), University College London, London WC1H 0NN, UK
| | - Morten Reeslev
- Mycometer A/S, Dr Neergaards Vej 3, 2970 Hørsholm, Denmark
| | - Hector Altamirano
- UK Centre for Moisture in Buildings (UKCMB), University College London, London WC1H 0NN, UK
- University College London (UCL), Institute of Environmental Design and Engineering (IEDE), London WC1H 0NN, UK
| | - Neil May
- UK Centre for Moisture in Buildings (UKCMB), University College London, London WC1H 0NN, UK
| | - Dina D’Ayala
- University College London (UCL), Department of Civil, Environmental and Geomatic Engineering (CEGE), Epicentre Research Group, London WC1E 6DE, UK
- UK Centre for Moisture in Buildings (UKCMB), University College London, London WC1H 0NN, UK
| |
Collapse
|
7
|
Indoor Microbiome: Quantification of Exposure and Association with Geographical Location, Meteorological Factors, and Land Use in France. Microorganisms 2020; 8:microorganisms8030341. [PMID: 32121209 PMCID: PMC7143953 DOI: 10.3390/microorganisms8030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
The indoor microbial community is a mixture of microorganisms resulting from outdoor ecosystems that seed the built environment. However, the biogeography of the indoor microbial community is still inadequately studied. Dust from more than 3000 dwellings across France was analyzed by qPCR using 17 targets: 10 molds, 3 bacteria groups, and 4 mites. Thus, the first spatial description of the main indoor microbial allergens on the French territory, in relation with biogeographical factors influencing the distribution of microorganisms, was realized in this study. Ten microorganisms out of 17 exhibited increasing abundance profiles across the country: Five microorganisms (Dermatophagoïdes pteronyssinus, Dermatophagoïdes spp., Streptomyces spp., Cladosporium sphaerospermum, Epicoccum nigrum) from northeast to southwest, two (Cryptococcus spp., Alternaria alternata) from northwest to southeast, Mycobacteria from east to west, Aspergillus fumigatus from south to north, and Penicillium chrysogenum from south to northeast. These geographical patterns were partly linked to climate and land cover. Multivariate analysis showed that composition of communities seemed to depend on landscapes, with species related to closed and rather cold and humid landscapes (forests, located in the northeast) and others to more open, hot, and dry landscapes (herbaceous and coastal regions, located in the west). This study highlights the importance of geographical location and outdoor factors that shape communities. In order to study the effect of microorganisms on human health (allergic diseases in particular), it is important to identify biogeographic factors that structure microbial communities on large spatial scales and to quantify the exposure with quantitative tools, such as the multi-qPCR approach.
Collapse
|
8
|
Lemons AR, Croston TL, Goldsmith WT, Barnes MA, Jaderson MA, Park JH, McKinney W, Beezhold DH, Green BJ. Cultivation and aerosolization of Stachybotrys chartarum for modeling pulmonary inhalation exposure. Inhal Toxicol 2019; 31:446-456. [PMID: 31874574 DOI: 10.1080/08958378.2019.1705939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Stachybotrys chartarum is a hydrophilic fungal species commonly found as a contaminant in water-damaged building materials. Although several studies have suggested that S. chartarum exposure elicits a variety of adverse health effects, the ability to characterize the pulmonary immune responses to exposure is limited by delivery methods that do not replicate environmental exposure. This study aimed to develop a method of S. chartarum aerosolization to better model inhalation exposures. Materials and methods: An acoustical generator system (AGS) was previously developed and utilized to aerosolize and deliver fungal spores to mice housed in a multi-animal nose-only exposure chamber. In this study, methods for cultivating, heat-inactivating, and aerosolizing two macrocyclic trichothecene-producing strains of S. chartartum using the AGS are described. Results and discussion: In addition to conidia, acoustical generation of one strain of S. chartarum resulted in the aerosolization of fungal fragments (<2 µm aerodynamic diameter) derived from conidia, phialides, and hyphae that initially comprised 50% of the total fungal particle count but was reduced to less than 10% over the duration of aerosolization. Acoustical generation of heat-inactivated S. chartarum did not result in a similar level of fragmentation. Delivery of dry, unextracted S. chartarum using these aerosolization methods resulted in pulmonary inflammation and immune cell infiltration in mice inhaling viable, but not heat-inactivated S. chartarum. Conclusions: These methods of S. chartarum growth and aerosolization allow for the delivery of fungal bioaerosols to rodents that may better simulate natural exposure within water-damaged indoor environments.
Collapse
Affiliation(s)
- Angela R Lemons
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Tara L Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - W Travis Goldsmith
- Engineering and Control Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mark A Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mukhtar A Jaderson
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ju-Hyeong Park
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Walter McKinney
- Engineering and Control Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Brett J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
9
|
Afanou AK, Straumfors A, Eduard W. Fungal aerosol composition in moldy basements. INDOOR AIR 2019; 29:780-790. [PMID: 31106451 PMCID: PMC6851693 DOI: 10.1111/ina.12567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 05/04/2023]
Abstract
Experimental aerosolization studies revealed that fungal fragments including small fragments in the submicrometer size are released from fungal cultures and have been suggested to represent an important fraction of overall fungal aerosols in indoor environments. However, their prevalence indoors and outdoors remains poorly characterized. Moldy basements were investigated for airborne fungal particles including spores, submicron fragments, and larger fragments. Particles were collected onto poly-L-lysine-coated polycarbonate filters and qualitatively and quantitatively analyzed using immunogold labeling combined with field emission scanning electron microscopy. We found that the total fungal aerosol levels including spores, submicrometer, and larger fragments in the moldy basements (median: 80 × 103 m-3 ) were not different from that estimated in control basements (63 × 103 m-3 ) and outdoor (90 × 103 m-3 ). However, mixed effect modeling of the fungal aerosol composition revealed that the fraction of fragments increased significantly in moldy basements, versus the spore fraction that increased significantly in outdoor air. These findings provide new insight on the compositional variation of mixed fungal aerosols in indoor as compared to outdoor air. Our results also suggest that further studies, aiming to investigate the role of fungal aerosols in the fungal exposure-disease relationships, should consider the mixed composition of various types of fungal particles.
Collapse
|
10
|
Afanou KA, Eduard W, Laier Johnsen HB, Straumfors A. Fungal Fragments and Fungal Aerosol Composition in Sawmills. Ann Work Expo Health 2019; 62:559-570. [PMID: 29846519 PMCID: PMC5972573 DOI: 10.1093/annweh/wxy022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 01/02/2023] Open
Abstract
Assessment of exposure to fungi has commonly been limited to fungal spore measurements that have shown associations between fungi and development or exacerbation of different airway diseases. Because large numbers of submicronic fragments can be aerosolized from fungal cultures under laboratory conditions, it has been suggested that fungal exposure is more complex and higher than that commonly revealed by spore measurements. However, the assessment of fungal fragments in complex environmental matrix remain limited due to methodological challenges. With a recently developed immunolabeling method for field emission scanning electron microscope (FESEM), we could assess the complex composition of fungal aerosols present in personal thoracic samples collected from two Norwegian sawmills. We found that large fungal fragments (length >1 µm) dominated the fungal aerosols indicating that the traditional monitoring approach of spores severely underestimate fungal exposure. The composition of fungal aerosols comprised in average 9% submicronic fragments, 62% large fragments, and 29% spores. The average concentrations of large and submicronic fragments (0.2–1 µm) were 3 × 105 and 0.6 × 105 particles m−3, respectively, and correlated weakly with spores (1.4 × 105 particles m−3). The levels of fragments were 2.6 times higher than the average spore concentration that was close to the proposed hazardous level of 105 spores per m3. The season influenced significantly the fungal aerosol concentrations but not the composition. Furthermore, the ratio of spores in the heterogeneous fungal aerosol composition was significantly higher in saw departments as compared to sorting of green timber departments where the fungal fragments were most prevalent. Being the dominating particles of fungal aerosols in sawmills, fungal fragments should be included in exposure-response studies to elucidate their importance for health impairments. Likewise, the use of fungal aerosol composition in such studies should be considered.
Collapse
Affiliation(s)
- Komlavi Anani Afanou
- Department of Chemical and Biological Work Environment, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Wijnand Eduard
- Department of Chemical and Biological Work Environment, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Helle Birgit Laier Johnsen
- Department of Occupational Medicine and Epidemiology, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Anne Straumfors
- Department of Chemical and Biological Work Environment, STAMI National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
11
|
Daschner A. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS. Front Immunol 2017; 7:672. [PMID: 28119688 PMCID: PMC5220099 DOI: 10.3389/fimmu.2016.00672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023] Open
Abstract
Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting.
Collapse
Affiliation(s)
- Alvaro Daschner
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Servicio de Alergia, Madrid, Spain
| |
Collapse
|
12
|
LaKind JS, Overpeck J, Breysse PN, Backer L, Richardson SD, Sobus J, Sapkota A, Upperman CR, Jiang C, Beard CB, Brunkard JM, Bell JE, Harris R, Chretien JP, Peltier RE, Chew GL, Blount BC. Exposure science in an age of rapidly changing climate: challenges and opportunities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:529-538. [PMID: 27485992 PMCID: PMC5071542 DOI: 10.1038/jes.2016.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/13/2016] [Indexed: 05/18/2023]
Abstract
Climate change is anticipated to alter the production, use, release, and fate of environmental chemicals, likely leading to increased uncertainty in exposure and human health risk predictions. Exposure science provides a key connection between changes in climate and associated health outcomes. The theme of the 2015 Annual Meeting of the International Society of Exposure Science-Exposures in an Evolving Environment-brought this issue to the fore. By directing attention to questions that may affect society in profound ways, exposure scientists have an opportunity to conduct "consequential science"-doing science that matters, using our tools for the greater good and to answer key policy questions, and identifying causes leading to implementation of solutions. Understanding the implications of changing exposures on public health may be one of the most consequential areas of study in which exposure scientists could currently be engaged. In this paper, we use a series of case studies to identify exposure data gaps and research paths that will enable us to capture the information necessary for understanding climate change-related human exposures and consequent health impacts. We hope that paper will focus attention on under-developed areas of exposure science that will likely have broad implications for public health.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, 21228 MD USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, 21201 MD USA
- Department of Pediatrics, Hershey Medical Center, Penn State U College of Medicine, Hershey, 17033 PA USA
| | - Jonathan Overpeck
- Institute of the Environment, University of Arizona, ENR2 Building, Room N523, 1064 East Lowell Street, PO Box 210137, Tucson, 85721-013 7 AZ USA
| | - Patrick N Breysse
- National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, NE, MS-F60,, Atlanta, 30341 GA USA
| | - Lorrie Backer
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS-F60, Atlanta, 30341 GA USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, JM Palms Center for GSR, Columbia, 29208 SC USA
| | - Jon Sobus
- National Exposure Research Laboratory, US Environmental Protection Agency, Mail Code: E205-04, Research Triangle Park, 27711 NC USA
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - Crystal R Upperman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - Chengsheng Jiang
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - C Ben Beard
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop P-02, 3156 Rampart Road, Fort Collins, 80521 CO USA
| | - J M Brunkard
- Waterborne Diseases Prevention Branch, Centers for Disease Control and Prevention, Mail Stop C-09, 1600 Clifton Road NE, Atlanta, 30333 GA USA
| | - Jesse E Bell
- Cooperative Institute for Climate and Satellites—NC, North Carolina State University, 151 Patton Avenue, Asheville, 28801 NC USA
| | - Ryan Harris
- USAF, 14th Weather Squadron (DoD Applied Climate Services), Asheville, NC USA
| | - Jean-Paul Chretien
- Armed Forces Health Surveillance Branch, Defense Health Agency, Silver Spring, MD USA
| | - Richard E Peltier
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, 149 Goessmann Laboratory, 686 North Pleasant Street, Amherst, 01003 MA USA
| | - Ginger L Chew
- Division of Environmental Hazards and Health Effects, Air Pollution and Respiratory Health Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS-F60, Atlanta, 30341 GA USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch of the Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS F47, Atlanta, 30341 GA USA
| |
Collapse
|
13
|
Chew GL, Horner WE, Kennedy K, Grimes C, Barnes CS, Phipatanakul W, Larenas-Linnemann D, Miller JD. Procedures to Assist Health Care Providers to Determine When Home Assessments for Potential Mold Exposure Are Warranted. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:417-422.e2. [PMID: 27021632 DOI: 10.1016/j.jaip.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/10/2016] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
Abstract
Drawing evidence from epidemiology and exposure assessment studies and recommendations from expert practice, we describe a process to guide health care providers helping their patients who present with symptoms that might be associated with living in damp housing. We present the procedures in the form of a guided 2-part interview. The first part has 5 questions that triage the patient toward a more detailed questionnaire that reflects features of housing conditions known to be reliably associated with exposures to mold and dampness contaminants. We chose the questions based on the conditions associated with moisture problems in homes across the United States and Canada. The goal is to facilitate the clinician's effort to help patients reduce exposure to environmental triggers that elicit symptoms to better manage their disease.
Collapse
Affiliation(s)
- Ginger L Chew
- National Center for Environmental Health, Air Pollution and Respiratory Health Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Ga.
| | | | - Kevin Kennedy
- Center for Environmental Health, Children's Mercy Hospital, Kansas City, Mo
| | | | - Charles S Barnes
- Center for Environmental Health, Children's Mercy Hospital, Kansas City, Mo
| | - Wanda Phipatanakul
- Division of Immunology and Allergy, Harvard Medical School and Boston Children's Hospital, Boston, Mass
| | | | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Mensah-Attipoe J, Saari S, Veijalainen AM, Pasanen P, Keskinen J, Leskinen JTT, Reponen T. Release and characteristics of fungal fragments in various conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:234-243. [PMID: 26789361 PMCID: PMC6705605 DOI: 10.1016/j.scitotenv.2015.12.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, dp ≥ 0.8 μm) and fragments (dp ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment-spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based on elemental composition, most fragments originated from fungi, but also fragments from growth material were detected.
Collapse
Affiliation(s)
- Jacob Mensah-Attipoe
- Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio, Finland
| | - Sampo Saari
- Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Anna-Maria Veijalainen
- Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio, Finland
| | - Pertti Pasanen
- Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio, Finland
| | - Jorma Keskinen
- Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Jari T T Leskinen
- SIB Labs, University of Eastern Finland, Yliopistonranta 1E, P. O. Box 1627, FI-70211, Kuopio, Finland
| | - Tiina Reponen
- Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| |
Collapse
|
15
|
Indirect Immunodetection of Fungal Fragments by Field Emission Scanning Electron Microscopy. Appl Environ Microbiol 2015; 81:5794-803. [PMID: 26092450 DOI: 10.1128/aem.00929-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample.
Collapse
|
16
|
Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. INDOOR AIR 2015; 25:125-56. [PMID: 25601374 DOI: 10.1111/ina.12182] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/20/2014] [Indexed: 05/21/2023]
Abstract
This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation-based research has taught us alongside more recent work with cultivation-independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well-being.
Collapse
Affiliation(s)
- A Nevalainen
- Institute for Health and Welfare, Kuopio, Finland
| | | | | |
Collapse
|
17
|
Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M, Wierzbicka A. Indoor aerosols: from personal exposure to risk assessment. INDOOR AIR 2013; 23:462-87. [PMID: 23574389 DOI: 10.1111/ina.12044] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/26/2013] [Indexed: 05/06/2023]
Abstract
Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.
Collapse
Affiliation(s)
- L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|