1
|
He Y, Zhou Y, Liu N, Zhang W, Chen X, Qiu G, Shen Y. Cathelicidin LL-37 in periodontitis: current research advances and future prospects - A review. Int Immunopharmacol 2025; 150:114277. [PMID: 39954662 DOI: 10.1016/j.intimp.2025.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
LL-37 is the sole member of the cathelicidin family of antimicrobial peptides in humans, primarily produced by phagocytic leukocytes and epithelial cells, mediating a wide range of biological responses. Discovered in human neutrophils, LL-37 is known for its broad-spectrum antimicrobial activity and immunomodulatory functions. In periodontitis, LL-37 is mainly expressed in gingival epithelium, gingival sulcus fluid, and saliva. Emerging evidence from several studies suggests that LL-37 is significant in the development of periodontitis, exhibiting antimicrobial, immunomodulatory, and tissue regenerative effects. Several studies have quantified the levels of LL-37 in gingival crevicular fluid (GCF), revealing elevated levels in patients with periodontitis compared to healthy controls. This review summarizes the expression and roles of LL-37 in periodontitis, providing new perspectives and insights into its pathogenesis and potential treatments. Additionally, this review aims to identify potential areas for future research, including therapeutic applications and biomarker development.
Collapse
Affiliation(s)
- Yeqing He
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuxi Zhou
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Na Liu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Weijun Zhang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xiaomin Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Guopeng Qiu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China.
| |
Collapse
|
2
|
Shimomura H, Wanibuchi K, Hosoda K, Amgalanbaatar A, Shoji M, Hayashi S. A short review: the biological activity of vitamin D and its decomposition products. Mol Biol Rep 2025; 52:214. [PMID: 39921794 DOI: 10.1007/s11033-025-10322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
A vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 exhibits numerous hormonal actions to various tissues and cells such as induction of calcium ion absorption, bone metabolism, activation of innate immune system. Because hormonal actions of 1α,25-dihydroxyvitamin D3 are too complex, it is difficult to better understand overall views of intermolecular networks on the cell activation by 1α,25-dihydroxyvitamin D3. In this review we concisely outline the most fundamental molecular mechanisms for the cell activation by 1α,25-dihydroxyvitamin D3 based on the previous and recent studies. In addition, we expound biological activity of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 that differs from hormonal actions. In addition, recent studies by our group revealed that vitamin D decomposition products confer extremely selective bactericidal action to Helicobacter pylori, a pathogen causative gastritis, peptic ulcers and gastric cancers in human. Vitamin D decomposition products induce the bacteriolysis as targeting of characteristic glycerophospholipids composed of the bacterial biomembranes. In the future we will expect to be capable of developing novel antibacterial agents targeting a characteristic glycerophospholipid of the pathogenic bacteria using vitamin D decomposition products as fundamental structures.
Collapse
Affiliation(s)
- Hirofumi Shimomura
- Department of Microbiology, School of Medicine, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan.
| | - Kiyofumi Wanibuchi
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Kouich Hosoda
- Processing for Distribution of Heiwajima, Manufacturing Team, Group of Product Procurement, Promotion Office of SCM, Terumo Co., 3-2-12, Heiwajima, Ota-ku, Tokyo, 143-0006, Japan
| | - Avarzed Amgalanbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, 14210, Zoing street, Sukhbaatar District, Ulaanbaatar, 14210, Mongolia
| | - Mitsuru Shoji
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan
| | - Shunji Hayashi
- Department of Microbiology, School of Medicine, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
3
|
Lappin MJ, Dellett M, Mills KI, Lundy FT, Irwin CR. The neutralising and stimulatory effects of antimicrobial peptide LL-37 in human gingival fibroblasts. Arch Oral Biol 2023; 148:105634. [PMID: 36773560 DOI: 10.1016/j.archoralbio.2023.105634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To investigate the effects of LL-37, a broad spectrum antimicrobial peptide expressed in periodontal tissues, on human gingival fibroblast responsiveness to microbial challenge and to explore the direct effects of LL-37 on human gingival fibroblasts. DESIGN The effect of LL-37 on bacterial lipopolysaccharide-induced expression of Interleukin (IL-6) and chemokine C-X-C motif ligand (CXCL) 8 was determined by enzyme linked immunosorbent assay (ELISA). LL-37's influence on bacterial lipopolysaccharide-induced IκBα degradation was investigated by western blot. DNA microarray analysis initially determined the direct effects of LL-37 on gene expression, these findings were subsequently confirmed by quantitative polymerase chain reaction and ELISA analysis of selected genes. RESULTS Bacterial lipopolysaccharide-induced IL-6 and CXCL8 production by human gingival fibroblasts was significantly reduced in the presence of LL-37 at concentrations in the range of 1-10 µg/ml. LL-37 led to a reduction in lipopolysaccharide-induced IκBα degradation by Escherichia coli lipopolysaccharide and Porphyromonas gingivalis lipopolysaccharide (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, Interleukin-24 (IL-24), CXCL8, Chemokine (C-C motif) Ligand 2, and Suppressor of Cytokine Signalling 3 mRNA were significantly upregulated by LL-37. LL-37 also significantly stimulated expression of CXCL8, hepatocyte growth factor and CXCL1 at the protein level. CONCLUSION LL-37 plays an important regulatory role in the immunomodulatory activity of gingival fibroblasts by inhibiting lipopolysaccharide -induced expression of inflammatory cytokines and directly stimulating the expression of an array of bioactive molecules involved in inflammation and repair.
Collapse
Affiliation(s)
| | - M Dellett
- Patrick G Johnston Centre for Cancer Research, UK
| | - K I Mills
- Patrick G Johnston Centre for Cancer Research, UK
| | - F T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | | |
Collapse
|
4
|
Inomata M, Amano S, Abe M, Hayashi T, Sakagami H. Innate immune response of human periodontal ligament fibroblasts via the Dectin-1/Syk pathway. J Med Microbiol 2022; 71. [PMID: 36748551 DOI: 10.1099/jmm.0.001627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. A diverse microbiota including fungi exists in the subgingival sites of patients with chronic periodontitis. The cell wall of Candida albicans, the most abundant fungal species, contains β-glucan. Dectin-1 binds β-glucan and participates in fungal recognition.Gap statement. Human periodontal ligament fibroblasts (PDLFs) are present in the periodontal ligament and synthesize immunomodulatory cytokines that influence the local response to infections. However, the expression and role of Dectin-1 in PDLFs have not been explored.Aim. This study aimed to determine if PDLFs express Dectin-1 and induce innate immune responses through Dectin-1 and the signalling molecule Syk.Methodology. The expression of Dectin-1 in PDLFs was determined by flow cytometry, western blotting and confocal microscopy. Real-time PCR and Western blotting were used to determine the immune response of PDLFs stimulated with β-glucan-rich zymosan and C. albicans.Results. Dectin-1 was constitutively expressed in PDLFs. Zymosan induced the expression of cytokines, including IL6, IL1B and IL17A, and the chemokine IL8. Zymosan also induced the expression of the antimicrobial peptide β-defensin-1 (DEFB1). Further, the phosphorylation of Syk and NF-κB occurred upon Dectin-1 activation. Notably, heat-killed C. albicans induced the expression of IL6, IL17A, IL8 and DEFB1, and this activation was suppressed by the Syk inhibitor, R406.Conclusion. These findings indicate that the Dectin-1/Syk pathway induces an innate immune response of PDLFs, which may facilitate the control of oral infections such as candidiasis and periodontitis.
Collapse
Affiliation(s)
- Megumi Inomata
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| | - Masayo Abe
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Toru Hayashi
- Department of Anatomy Science, School of Allied Health Sciences, Kitasato University, Kitasato, Japan
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
5
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
7
|
Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages. Int J Mol Sci 2021; 22:ijms22157856. [PMID: 34360629 PMCID: PMC8345949 DOI: 10.3390/ijms22157856] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.
Collapse
|
8
|
Inomata M, Horie T, Into T. Effect of the Antimicrobial Peptide LL-37 on Gene Expression of Chemokines and 29 Toll-like Receptor-Associated Proteins in Human Gingival Fibroblasts Under Stimulation with Porphyromonas gingivalis Lipopolysaccharide. Probiotics Antimicrob Proteins 2021; 12:64-72. [PMID: 31686299 DOI: 10.1007/s12602-019-09600-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antimicrobial peptide LL-37 neutralizes the biological activity of lipopolysaccharide (LPS), while it upregulates the expression of several immune-related genes. We investigated the effect of LL-37 on gene regulation of human gingival fibroblasts (HGFs), stimulated with or without Porphyromonas gingivalis-derived LPS, a ligand for Toll-like receptor (TLR). LL-37 was non-toxic to HGFs up to a concentration of 10 μg/ml. P. gingivalis LPS upregulated the expression of IL8, CXCL10, and CCL2, whereas LL-37 reduced this upregulation. In absence of LPS, LL-37 itself upregulated the expression of IL8 and CCL2. LL-37 increased the expression of P2X7, which was constitutively expressed in HGFs. The P2X7 antagonist A-438079 suppressed the cytotoxicity and upregulatory effect of LL-37 on chemokine response, but not its downregulatory effect on P. gingivalis LPS-induced chemokine response. Whether LL-37 alters the expression of 29 genes that encode TLR-associated proteins, including TLRs, co-receptors, signaling molecules, and negative regulators, in HGFs, under stimulation with LPS, was examined. Among TLRs, P. gingivalis LPS upregulated the level of TLR4, whereas LL-37 reduced it. In co-receptors, LL-37 downregulated the level of CD14. Among signaling molecules, LL-37 augmented the LPS-upregulated expression of IRAK1. Similar effects were observed in the specific negative regulators TNFAIP3, RNF216, TOLLIP, and SIGIRR. Our results suggest that LL-37 exerts cytotoxicity and upregulation of chemokine response via the P2X7 receptor, while it induces downregulation of P. gingivalis LPS-induced chemokine response through alteration in the expression of 7 specific TLR-associated genes: downregulation of TLR4 and CD14 and upregulation of IRAK1, TNFAIP3, RNF216, TOLLIP, and SIGIRR.
Collapse
Affiliation(s)
- Megumi Inomata
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, 501-0296, Japan.
| | - Toshi Horie
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, 501-0296, Japan.
| |
Collapse
|
9
|
Yan CY, Liu YZ, Xu ZH, Yang HY, Li J. Comparison of Antibacterial Effect of Cationic Peptide LL-37 and Cefalexin on Clinical Staphylococcus aureus-induced Infection after Femur Fracture Fixation. Orthop Surg 2020; 12:1313-1318. [PMID: 32725811 PMCID: PMC7454154 DOI: 10.1111/os.12754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Antimicrobial peptides are widely present in nature, with many of the antimicrobial peptides having antimicrobial activity against Gram‐positive and Gram‐negative bacteria, fungi, parasites, and even coated viruses. Internal fixation of fractures is a reliable technique. However, the fracture is difficult to heal and internal fixation is not easy to maintain after infection. This study aims to verify the antibacterial effect of cationic peptide LL‐37 on Staphylococcus aureus, explore the anti‐biofilm effects of LL‐37, and compare the effects of the cationic peptide LL‐37 and Cefalexin in treatment of postoperative infection of femoral fracture in vivo. Methods The Staphylococcus aureus was clinically isolated from one patient with clinical infection after the fracture fixation at Wuxi 9th People's Hospital. The cationic peptide LL‐37 was synthesized by Shanghai Apeptide Co. Ltd. To compare the effects of the cationic peptide LL‐37 and Cefalexin in the treatment of postoperative infection of femoral fracture in vivo, 63 rabbits with internal fixation of femoral fractures were inoculated intravenously with clinically isolated pathogenic bacteria suspensions. Rabbits in the treatment groups were treated with peptide LL‐37 and Cefalexin after surgery. Rabbits in the control groups were treated with physiological saline after surgery. The biofilms on internal fixtures were harvested from euthanized rabbits 1 h, 12 h, 1 day, 2 days, and 7 days after injection of LL‐37, Cefalexin, or saline and calculated by colony count. The biofilms from treatment and control groups at 7 days were analyzed by fluorescence microscopy. Blood samples were collected at 1 h, 12 h, 1 day, 2 days, and 7 days following peptide LL‐37 and Cefalexin injection. Results The results were compared statistically using Student's t‐test or two‐way analysis of variance (ANOVA). Cationic peptide LL‐37 showed significant inhibitory effects on clinically isolated Staphylococcus aureus (P < 0.05) compared with Cefalexin and control group at 1 day (P = 0.021), 2 days (P = 0.019), and 7 days (P = 0.025). Fluorescent images of the biofilm reveal that the numbers of cells on biofilms are far less than those in the Cefalexin and control groups at 7 days. The levels of Interleukin‐6 (IL‐6), tumor necrosis factor‐α (TNF‐α) and C‐reactive protein (CRP) reached a maximum at 2 days following the operation. After the injection of LL‐37, there was an increase in the serum IL‐6, TNF‐α, and CRP contents in rabbits in both groups, however from 1 day postoperative the level of IL‐6 (P = 0.034), TNF‐α (P = 0.043), and CRP (P = 0.039) decreased significantly compared to the Cefalexin and control group. At 7 days postoperative, the level of IL‐6 (P = 0.029), TNF‐α (P = 0.033), and CRP (P = 0.027) had reverted to normal levels in LL‐37 groups. Conclusions Cationic peptide LL‐37 may be a promising agent to control internal femoral fracture fixation infection in vivo.
Collapse
Affiliation(s)
- Cheng-Yuan Yan
- Department of Orthopaedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Yu-Zhou Liu
- Department of Orthopaedics, Wuxi 9th People's Hospital affiliated to Soochow University, Wuxi, China
| | - Zhong-Hua Xu
- Department of Orthopaedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Hao-Yu Yang
- Department of Orthopaedics, Wuxi 9th People's Hospital affiliated to Soochow University, Wuxi, China
| | - Jin Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
10
|
OmpA-like proteins of Porphyromonas gingivalis contribute to serum resistance and prevent Toll-like receptor 4-mediated host cell activation. PLoS One 2018; 13:e0202791. [PMID: 30153274 PMCID: PMC6112661 DOI: 10.1371/journal.pone.0202791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/09/2018] [Indexed: 12/03/2022] Open
Abstract
Porphyromonas gingivalis possesses various abilities to evade and disrupt host immune responses, by which it acts as an important periodontal pathogen. P. gingivalis produces outer membrane protein A (OmpA)-like proteins (OmpALPs), Pgm6 and Pgm7, as major O-linked glycoproteins, but their pathological roles in P. gingivalis infection are largely unknown. Here, we report that OmpALP-deficient strains of P. gingivalis show an enhanced stimulatory activity in coculture with host cells. Such an altered ability of the OmpALP-deficient strains was found to be due to their impaired survival in coculture and the release of LPS from dead bacterial cells to stimulate Toll-like receptor 4 (TLR4). Further analyses revealed that the OmpALP-deficient strains were inviable in serum-containing media although they grew normally in the bacterial medium. The wild-type strain was able to grow in 90% normal human serum, while the OmpALP-deficient strains did not survive even at 5%. The OmpALP-deficient strains did not survive in heat-inactivated serum, but they gained the ability to survive and grow in proteinase K-treated serum. Of note, the sensitivity of the OmpALP-deficient strains to the bactericidal activity of human β-defensin 3 was increased as compared with the WT. Thus, this study suggests that OmpALPs Pgm6 and Pgm7 are important for serum resistance of P. gingivalis. These proteins prevent bacterial cell destruction by serum and innate immune recognition by TLR4; this way, P. gingivalis may adeptly colonize serum-containing gingival crevicular fluids and subgingival environments.
Collapse
|
11
|
Hemshekhar M, Choi KYG, Mookherjee N. Host Defense Peptide LL-37-Mediated Chemoattractant Properties, but Not Anti-Inflammatory Cytokine IL-1RA Production, Is Selectively Controlled by Cdc42 Rho GTPase via G Protein-Coupled Receptors and JNK Mitogen-Activated Protein Kinase. Front Immunol 2018; 9:1871. [PMID: 30158931 PMCID: PMC6104452 DOI: 10.3389/fimmu.2018.01871] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The human host defense peptide LL-37 promotes immune activation such as induction of chemokine production and recruitment of leukocytes. Conversely, LL-37 also mediates anti-inflammatory responses such as production of anti-inflammatory cytokines, e.g., IL-1RA, and the control of pro-inflammatory cytokines, e.g., TNF. The mechanisms regulating these disparate immunomodulatory functions of LL-37 are not completely understood. Rho GTPases are GTP-binding proteins that promote fundamental immune functions such as chemokine production and recruitment of leukocytes. However, recent studies have shown that distinct Rho proteins can both negatively and positively regulate inflammation. Therefore, we interrogated the role of Rho GTPases in LL-37-mediated immunomodulation. We demonstrate that LL-37-induced production of chemokines, e.g., GRO-α and IL-8 is largely dependent on Cdc42/Rac1 Rho GTPase, but independent of the Ras pathway. In contrast, LL-37-induced production of the anti-inflammatory cytokine IL-1RA is not dependent on either Cdc42/Rac1 RhoGTPase or Ras GTPase. Functional studies confirmed that LL-37-induced recruitment of leukocytes (monocytes and neutrophils) is also dependent on Cdc42/Rac1 RhoGTPase activity. We demonstrate that Cdc42/Rac1-dependent bioactivity of LL-37 involves G-protein-coupled receptors (GPCR) and JNK mitogen-activated protein kinase (MAPK) signaling, but not p38 or ERK MAPK signaling. We further show that LL-37 specifically enhances the activity of Cdc42 Rho GTPase, and that the knockdown of Cdc42 suppresses LL-37-induced production of chemokines without altering the peptide's ability to induce IL-1RA. This is the first study to demonstrate the role of Rho GTPases in LL-37-mediated responses. We demonstrate that LL-37 facilitates chemokine production and leukocyte recruitment engaging Cdc42/Rac1 Rho GTPase via GPCR and the JNK MAPK pathway. In contrast, LL-37-mediated anti-inflammatory cytokine IL-1RA production is independent of either Rho or Ras GTPase. The results of this study suggest that Cdc42 Rho GTPase may be the molecular switch that controls the opposing functions of LL-37 in the process of inflammation.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ka-Yee Grace Choi
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
TADA H, SHIMIZU T, MATSUSHITA K, TAKADA H. Porphyromonas gingivalis-induced IL-33 down-regulates hCAP-18/LL-37 production in human gingival epithelial cells . Biomed Res 2017. [DOI: 10.2220/biomedres.38.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroyuki TADA
- Division of Oral Microbiology, Tohoku University Graduate School of Dentistry
| | - Takamitsu SHIMIZU
- Division of Oral Microbiology, Tohoku University Graduate School of Dentistry
| | - Kenji MATSUSHITA
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology
| | - Haruhiko TAKADA
- Division of Oral Microbiology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
13
|
Horie T, Inomata M, Into T, Hasegawa Y, Kitai N, Yoshimura F, Murakami Y. Identification of OmpA-Like Protein of Tannerella forsythia as an O-Linked Glycoprotein and Its Binding Capability to Lectins. PLoS One 2016; 11:e0163974. [PMID: 27711121 PMCID: PMC5053532 DOI: 10.1371/journal.pone.0163974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial glycoproteins are associated with physiological and pathogenic functions of bacteria. It remains unclear whether bacterial glycoproteins can bind to specific classes of lectins expressed on host cells. Tannerella forsythia is a gram-negative oral anaerobe that contributes to the development of periodontitis. In this study, we aimed to find lectin-binding glycoproteins in T. forsythia. We performed affinity chromatography of wheat germ agglutinin, which binds to N-acetylglucosamine (GlcNAc) and sialic acid (Sia), and identified OmpA-like protein as the glycoprotein that has the highest affinity. Mass spectrometry revealed that OmpA-like protein contains O-type N-acetylhexosamine and hexose. Fluorometry quantitatively showed that OmpA-like protein contains Sia. OmpA-like protein was found to bind to lectins including E-selectin, P-selectin, L-selectin, Siglec-5, Siglec-9, Siglec-10, and DC-SIGN. The binding of OmpA-like protein to these lectins, except for the Siglecs, depends on the presence of calcium. N-acetylneuraminic acid (NeuAc), which is the most abundant Sia, inhibited the binding of OmpA-like protein to all of these lectins, whereas GlcNAc and mannose only inhibited the binding to DC-SIGN. We further found that T. forsythia adhered to human oral epithelial cells, which express E-selectin and P-selectin, and that this adhesion was inhibited by addition of NeuAc. Moreover, adhesion of an OmpA-like protein-deficient T. forsythia strain to the cells was reduced compared to that of the wild-type strain. Our findings indicate that OmpA-like protein of T. forsythia contains O-linked sugar chains that can mediate interactions with specific lectins. This interaction is suggested to facilitate adhesion of T. forsythia to the surface of host cells.
Collapse
Affiliation(s)
- Toshi Horie
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Megumi Inomata
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- * E-mail:
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Noriyuki Kitai
- Department of Orthodontics, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
14
|
Abstract
Human cathelicidin LL-37, the only member of the cathelicidin family of host defense peptides expressed in humans, plays a crucial role in host defense against pathogen invasion, as well as in regulating the functions of anti-inflammation, antitumorigenesis, and tissue repair. It is primarily produced by phagocytic leukocytes and epithelial cells, and mediates a wide range of biological responses. Emerging evidence from several studies indicates that LL-37 plays a prominent and complex role in inflammatory bowel disease (IBD). Although overexpression of LL-37 has been implicated in the inflamed and noninflamed colon mucosa in patients with ulcerative colitis, LL-37 expression was not changed in the inflamed or noninflamed colon or ileal mucosa in patients with Crohn's disease. Furthermore, studies in animal models and human patients further characterized the protective effect of cathelicidins both in ulcerative colitis and Crohn's disease. These data suggest the intricate functions of LL-37 in IBD. They will also create many strategies and opportunities for therapeutic intervention in IBD in the future. This review aims to elucidate the structure and bioactivity of LL-37 and also discuss the recent progress in understanding the relationship between LL-37 and IBD.
Collapse
|
15
|
Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production. Inflamm Res 2015; 65:25-32. [DOI: 10.1007/s00011-015-0884-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
|
16
|
Lombardo Bedran TB, Palomari Spolidorio D, Grenier D. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. Arch Oral Biol 2015; 60:845-53. [PMID: 25791329 DOI: 10.1016/j.archoralbio.2015.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. METHODS A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 μg/ml), EGCG (1 and 5 μg/ml), and LL-37 (0.1 and 0.2 μM) individually and in combination (AC-PACs+LL-37 and EGCG+LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). RESULTS LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. AC-PACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-α), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-γ inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-α, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. CONCLUSION The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D co-culture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis.
Collapse
Affiliation(s)
- Telma Blanca Lombardo Bedran
- Department of Oral Diagnosis and Surgery, Araraquara Dental School, State University of São Paulo, São Paulo, Brazil
| | - Denise Palomari Spolidorio
- Department of Physiology and Pathology, Araraquara Dental School, State University of São Paulo, São Paulo, Brazil
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
17
|
Epithelial antimicrobial peptides: guardian of the oral cavity. INTERNATIONAL JOURNAL OF PEPTIDES 2014; 2014:370297. [PMID: 25435884 PMCID: PMC4243596 DOI: 10.1155/2014/370297] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022]
Abstract
Gingival epithelium provides first line of defence from the microorganisms present in dental plaque. It not only provides a mechanical barrier but also has an active immune function too. Gingival epithelial cells participate in innate immunity by producing a range of antimicrobial peptides to protect the host against oral pathogens. These epithelial antimicrobial peptides (EAPs) include the β-defensin family, cathelicidin (LL-37), calprotectin, and adrenomedullin. While some are constitutively expressed in gingival epithelial cells, others are induced upon exposure to microbial insults. It is likely that these EAPs have a role in determining the initiation and progression of oral diseases. EAPs are broad spectrum antimicrobials with a different but overlapping range of activity. Apart from antimicrobial activity, they participate in several other crucial roles in host tissues. Some of these, for instance, β-defensins, are chemotactic to immune cells. Others, such as calprotectin are important for wound healing and cell proliferation. Adrenomedullin, a multifunctional peptide, has its biological action in a wide range of tissues. Not only is it a potent vasodilator but also it has several endocrine effects. Knowing in detail the various bioactions of these EAPs may provide us with useful information regarding their utility as therapeutic agents.
Collapse
|
18
|
Bedran TBL, Mayer MPA, Spolidorio DP, Grenier D. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One 2014; 9:e106766. [PMID: 25187958 PMCID: PMC4154759 DOI: 10.1371/journal.pone.0106766] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
Given the spread of antibiotic resistance in bacterial pathogens, antimicrobial peptides that can also modulate the immune response may be a novel approach for effectively controlling periodontal infections. In the present study, we used a three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) to investigate the anti-inflammatory properties of human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) and to determine whether these antimicrobial peptides can act in synergy. The 3D co-culture model composed of gingival fibroblasts embedded in a collagen matrix overlaid with gingival epithelial cells had a synergistic effect with respect to the secretion of IL-6 and IL-8 in response to LPS stimulation compared to fibroblasts and epithelial cells alone. The 3D co-culture model was stimulated with non-cytotoxic concentrations of hBD-3 (10 and 20 µM) and LL-37 (0.1 and 0.2 µM) individually and in combination in the presence of A. actinomycetemcomitans LPS. A multiplex ELISA assay was used to quantify the secretion of 41 different cytokines. hBD-3 and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IP-10, IL-6, and MCP-1, but only had an additive effect on reducing the secretion of IL-8 in response to A. actinomycetemcomitans LPS stimulation. The present study showed that hBD-3 acted in synergy with LL-37 to reduce the secretion of cytokines by an LPS-stimulated 3D model of gingival mucosa. This combination of antimicrobial peptides thus shows promising potential as an adjunctive therapy for treating inflammatory periodontitis.
Collapse
Affiliation(s)
- Telma Blanca Lombardo Bedran
- Department of Oral Diagnosis and Surgery, Araraquara Dental School, State University of São Paulo, São Paulo, Brazil
| | - Márcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Denise Palomari Spolidorio
- Department of Physiology and Pathology, Araraquara Dental School, State University of São Paulo, São Paulo, Brazil
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
19
|
Tangpricha V, Judd SE, Ziegler TR, Hao L, Alvarez JA, Fitzpatrick AM, McComsey GA, Eckard AR. LL-37 concentrations and the relationship to vitamin D, immune status, and inflammation in HIV-infected children and young adults. AIDS Res Hum Retroviruses 2014; 30:670-6. [PMID: 24798231 DOI: 10.1089/aid.2013.0279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptide LL-37 is produced in response to active vitamin D to exert immunomodulatory effects and inhibits HIV replication in vitro. To date, no studies have investigated LL-37 in HIV-infected patients. This study sought to investigate LL-37 and the relationship to 25-hydroxyvitamin D [25(OH)D] and HIV-related variables in this population. HIV-infected subjects and healthy controls ages 1-25 years old were prospectively enrolled in this cross-sectional study. Fasting plasma LL-37 and 25(OH)D concentrations were measured in duplicate with ELISA. HIV(+) subjects (36 antiretroviral therapy (ART)-experienced subjects; 27 ART-naïve subjects) and 31 healthy controls were enrolled. Overall, 93% were black and the median age was 20 years. There was no difference in median (interquartile range) LL-37 between the HIV-infected group and controls [58.3 (46.4,69.5) vs. 51.3 (40.8,98.2) ng/ml, respectively; p=0.57]; however, the ART-experienced group had higher concentrations than the ART-naive group [66.2 (55.4,77.0) vs. 48.9 (38.9,57.9) ng/ml, respectively; p<0.001]. LL-37 was positively correlated with 25(OH)D in controls, but not in HIV-infected groups, and was positively correlated with current CD4 and ΔCD4 (current-nadir) in the ART-experienced group. After adjustment for age, race, sex, and HIV duration, the association between LL-37 and CD4 remained significant. These findings suggest that HIV and/or HIV-related variables may alter the expected positive relationship between vitamin D and LL-37 and should be further investigated.
Collapse
Affiliation(s)
| | | | | | - Li Hao
- Emory University School of Medicine, Atlanta, Georgia
| | | | - Anne M. Fitzpatrick
- Emory University School of Medicine, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Grace A. McComsey
- Rainbow Babies and Children's Hospital and Case Western Reserve University/Case Medical Center, Cleveland, Ohio
| | - Allison Ross Eckard
- Emory University School of Medicine, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
20
|
Yee M, Kim S, Sethi P, Düzgüneş N, Konopka K. Porphyromonas gingivalis stimulates IL-6 and IL-8 secretion in GMSM-K, HSC-3 and H413 oral epithelial cells. Anaerobe 2014; 28:62-7. [PMID: 24887636 DOI: 10.1016/j.anaerobe.2014.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/05/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Infection of oral epithelial cells with periodontopathogenic bacteria results in the production of pro-inflammatory cytokines involved in the initiation and progression of periodontal disease. The purpose of this study was to examine the release of interleukin (IL)-6 and IL-8 by oral epithelial cells after exposure to Porphyromonas gingivalis. Non-tumor-derived, immortalized human GMSM-K cells, and human oral squamous cell carcinoma, HSC-3 and H413 cells, were co-cultured with live and heat-inactivated P. gingivalis 2561 (ATCC 33277) and W83 (ATCC BAA-308™). IL-6 and IL-8 were quantified in the culture supernatants after 6 and 24 h. The basal levels of both cytokines and the responses to P. gingivalis were strongly dependent on cell type. GMSM-K cells produced less IL-8 than HSC-3 and H413 cells. Live P. gingivalis induced significant IL-6 and IL-8 secretion in GMSM-K and HSC-3 cells, and heat-inactivation of bacteria enhanced greatly IL-6 and IL-8 stimulation in these cells. Uninfected H413 cells produced high levels of IL-6 and IL-8, but were not responsive to live P. gingivalis; heat-inactivated P. gingivalis up-regulated IL-6 and IL-8 secretion in these cells. Since base-line secretion of IL-6 and IL-8, and responses to P. gingivalis depend on the cell type, conclusions on the responses to P. gingivalis should not be based on studies with a single cell type.
Collapse
Affiliation(s)
- Michael Yee
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Shawn Kim
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Pushpinder Sethi
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Krystyna Konopka
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States.
| |
Collapse
|
21
|
Brogden KA, Johnson GK, Vincent SD, Abbasi T, Vali S. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther 2014; 11:1097-113. [DOI: 10.1586/14787210.2013.836059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Gonçalves PF, Klepac-Ceraj V, Huang H, Paster BJ, Aukhil I, Wallet SM, Shaddox LM. Correlation of Aggregatibacter actinomycetemcomitans detection with clinical/immunoinflammatory profile of localized aggressive periodontitis using a 16S rRNA microarray method: a cross-sectional study. PLoS One 2013; 8:e85066. [PMID: 24376864 PMCID: PMC3871691 DOI: 10.1371/journal.pone.0085066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The objective of this study was to determine whether the detection of Aggregatibacter actinomycetemcomitans (Aa) correlates with the clinical and immunoinflammatory profile of Localized Aggressive Periodontitis (LAP), as determined by by 16S rRNA gene-based microarray. SUBJECTS AND METHODS Subgingival plaque samples from the deepest diseased site of 30 LAP patients [PD ≥ 5 mm, BoP and bone loss] were analyzed by 16S rRNA gene-based microarrays. Gingival crevicular fluid (GCF) samples were analyzed for 14 cyto/chemokines. Peripheral blood was obtained and stimulated in vitro with P.gingivalis and E.coli to evaluate inflammatory response profiles. Plasma lipopolysaccharide (LPS) levels were also measured. RESULTS Aa was detected in 56% of LAP patients and was shown to be an indicator for different bacterial community structures (p<0.01). Elevated levels of pro-inflammatory cyto/chemokines were detected in LPS-stimulated blood samples in both Aa-detected and Aa-non-detected groups (p>0.05). Clinical parameters and serum LPS levels were similar between groups. However, Aa-non-detected GCF contained higher concentration of IL-8 than Aa-detected sites (p<0.05). TNFα and IL1β were elevated upon E.coli LPS stimulation of peripheral blood cells derived from patients with Aa-detected sites. CONCLUSIONS Our findings demonstrate that the detection of Aa in LAP affected sites, did not correlate with clinical severity of the disease at the time of sampling in this cross-sectional study, although it did associate with lower local levels of IL-8, a different subgingival bacterial profile and elevated LPS-induced levels of TNFα and IL1β.
Collapse
Affiliation(s)
- Patricia F Gonçalves
- Department of Dentistry, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil ; Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Vanja Klepac-Ceraj
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Hong Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Bruce J Paster
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Ikramuddin Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Shannon M Wallet
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Luciana M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Tang X, Pan Y, Zhao Y. Vitamin D inhibits the expression of interleukin-8 in human periodontal ligament cells stimulated with Porphyromonas gingivalis. Arch Oral Biol 2012; 58:397-407. [PMID: 23083515 DOI: 10.1016/j.archoralbio.2012.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Vitamin D has been known to be closely associated with periodontitis while the exact mechanisms remain unclear. The present study aimed to discover the effects of 1a,25-dihydroxyvitamin D3 (1,25D) on the expressions of interleukin (IL)-6 and IL-8 in human periodontal ligament cells (hPDLCs) stimulated with Porphyromonas gingivalis (P. gingivalis) W83. DESIGN Primary cultures of hPDLCs from ten donors were established and the cells of passage four were treated with 1,25D or P. gingivalis individually or 1,25D combined with P. gingivalis. The levels of IL-6 and IL-8 protein in hPDLCs were detected with enzyme-linked immunosorbent assay (ELISA) and the mRNA levels were detected with real-time RT-PCR. RESULTS P. gingivalis significantly promoted the protein expressions of IL-6 and IL-8. P. gingivalis at the multiplicity of infection (MOI) 100 exerted the strongest promotion effect on the IL-6 protein expression by 5.83-fold compared with the controls (2482.88±26.53pg/ml versus 425.80±77.25pg/ml, P<0.0005) and the IL-8 protein expression by 12.39-fold (4965.81±1072.55pg/ml versus 400.75±2.27pg/ml, P=0.005) in hPDLCs at 24h. At 48h, 10(-8)mol/L 1,25D had the best inhibition on the IL-8 protein expression in hPDLCs by 2.00-fold compared with the controls (100.76±21.11pg/ml versus 201.75±18.15pg/ml, P<0.0005) and the IL-8 mRNA expression by 2.13-fold (P<0.0005). 10(-8)mol/L 1,25D combined with P. gingivalis (MOI 100) exerted the strongest inhibition effect on the IL-8 protein expression by 1.54-fold compared with P. gingivalis treatment alone (3077.33±210.04pg/ml versus 4738.24±1386.17pg/ml, P=0.018) and the IL-8 mRNA expression by 1.78-fold (P=0.012) in hPDLCs at 12h. 1,25D did not influence the expression of IL-6 in hPDLCs with or without P. gingivalis treatment. CONCLUSION Vitamin D may potentially inhibit the periodontal inflammation induced by P. gingivalis partly by decreasing the IL-8 expression in hPDLCs.
Collapse
Affiliation(s)
- Xiaolin Tang
- Department of Medical Genetics, China Medical University, 92 North 2nd Road, Heping District, Shenyang, Liaoning Province, China
| | | | | |
Collapse
|
24
|
Gutiérrez-Venegas G, Contreras-Sánchez A. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts. Mol Biol Rep 2012; 40:477-85. [PMID: 23054013 DOI: 10.1007/s11033-012-2083-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022]
Abstract
Periodontitis is an inflammatory process of infectious origin that affects the gums and, in severe cases, destroys connective tissue, leading to loss of the dental organ. Gram-negative Porphyromonas gingivalis bacteria are recovered from patients with chronic periodontitis. The polysaccharide obtained from these bacteria induces the expression of interleukin (IL)-1 beta, tumor necrosis factor, and IL-6. Flavonoids are molecules that participate in the control of inflammatory processes. We studied the role of the flavonoids fisetin, luteolin, myricetin, and morin in inhibiting the activation of mitogen-activated protein kinase (MAPK) and AKT as well as their role in lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) transcription. All four of these flavonoids were found to inhibit MAPK and AKT. Fisetin and luteolin blocked the activation of MAPK and AKT to levels below basal levels. All of these flavonoids also blocked LPS-mediated COX-2 expression.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico.
| | | |
Collapse
|
25
|
Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 2012; 84:256-64. [PMID: 22443521 DOI: 10.1902/jop.2012.110652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The antimicrobial peptide LL-37 is known to have a potent lipopolysaccharide (LPS)-neutralizing activity in various cell types. Because of observed heterogeneity within periodontopathogenic LPS, the authors hypothesized that LL-37 had specificity to neutralize such LPS activity. The present study, therefore, aims to investigate the LPS-neutralizing activity of LL-37 to various periodontopathogenic LPS in interleukin-8 (IL-8) production after challenging them in human oral fibroblasts. METHODS Human periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) were cultured from biopsies of periodontal ligament and gingival tissues. After cell confluence in 24-well plates, LPS (10 μg/mL) from Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans were added with or without LL-37 (10 μg/mL). After 18 hours, the supernatant was collected and analyzed in IL-8 production by enzyme-linked immunosorbent assay. RESULTS All periodontopathogenic LPS statistically significantly induced IL-8 production in both PDLF and GF (P <0.01). After neutralization with LL-37, both PDLF and GF showed a statistically significant reduction in IL-8 production compared with LPS-treated groups without LL-37 (P <0.01), and the percentage of reduction in IL-8 production in PDLF appeared to be higher than in GF. In addition, the percentage of reduction in IL-8 production varied considerably according to each periodontopathogenic LPS. CONCLUSIONS The antimicrobial peptide LL-37 had an ability to suppress periodontopathogenic LPS-induced IL-8 production in both PDLF and GF. Its LPS-neutralizing activity revealed specificity to periodontopathogenic LPS and seemed to be dependent on the heterogeneity within LPS between different genera.
Collapse
Affiliation(s)
- Wiroj Suphasiriroj
- Department of Periodontology, The Nippon Dental University, School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan.
| | | | | | | |
Collapse
|
26
|
Gursoy UK, Pöllänen M, Könönen E, Uitto VJ. A Novel Organotypic Dento-Epithelial Culture Model: Effect of Fusobacterium nucleatum Biofilm on B-Defensin-2, -3, and LL-37 Expression. J Periodontol 2012; 83:242-7. [DOI: 10.1902/jop.2011.110177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Jönsson D, Nilsson BO. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodontal Res 2011; 47:330-5. [PMID: 22066867 DOI: 10.1111/j.1600-0765.2011.01436.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The antimicrobial peptide LL-37 is expressed in periodontal tissue, and variations in LL-37 levels have been associated with periodontal disease. The effects of LL-37 on periodontal ligament cell function have not been described before. Here, we assess anti-inflammatory properties of LL-37 and investigate the effects of LL-37 on cell differentiation, cell proliferation and apoptosis in human periodontal ligament cells. MATERIAL AND METHODS Periodontal ligament cells were obtained from teeth extracted for orthodontic reasons. Cytokine (interleukin-6) and chemokine (monocyte chemoattractant protein-1) expression was determined by quantitative PCR, cell differentiation by alkaline phosphatase activity, cell proliferation by counting cells in a Bürker chamber, DNA synthesis by incorporation of radiolabeled thymidine and apoptosis by cell morphology and activated caspase 3 quantities. RESULTS Treatment with 0.1 and 1 μm of LL-37 totally reversed lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and suppressed lipopolysaccharide-induced interleukin-6 expression by 50-70%. LL-37 had no effect on alkaline phosphatase activity. Incubation with 8 μm LL-37 strongly reduced cell number. DNA synthesis was attenuated by about 90% in response to 8 μm LL-37, confirming its antiproliferative effect. Cell morphology was altered in an apoptosis-like fashion in cells treated with 8 μm LL-37. Furthermore, the quantity of activated caspase 3 was increased in cells treated with 1 and 8 μm of LL-37, suggesting apoptosis. CONCLUSION LL-37 strongly attenuates lipopolysaccharide-induced cytokine and chemokine expression and, in high concentrations, reduces cell proliferation through inhibition of DNA synthesis and by promoting apoptosis in human periodontal ligament cells.
Collapse
Affiliation(s)
- D Jönsson
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | | |
Collapse
|
28
|
Takeuchi Y, Nagasawa T, Katagiri S, Kitagawara S, Kobayashi H, Koyanagi T, Izumi Y. Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. J Periodontol 2011; 83:766-72. [PMID: 21942788 DOI: 10.1902/jop.2011.100767] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The purpose of this study is to examine the relationship between salivary LL-37 levels and clinical severity in patients with chronic periodontitis (CP). The presence/absence of four periodontopathic bacteria and salivary cotinine levels were also examined to assess the impact of these factors on LL-37 production. METHODS Unstimulated salivary samples were collected from 69 patients with CP. Salivary concentrations of LL-37 and cotinine were measured by enzyme-linked immunosorbent assay. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola in saliva were detected by polymerase chain reaction. Periodontal examination included determination of probing depth (PD), clinical attachment level, bleeding on probing, and plaque control record. RESULTS Mean salivary LL-37 concentration was 225.0 ± 227.2 ng/mL, and a high prevalence of periodontopathic bacteria was observed. The stepwise ordinal logistic regression model showed that high salivary LL-37 levels were significantly associated with the presence of T. denticola and higher percentage of teeth with PD ≥5 mm. In addition, higher salivary cotinine levels (≥8 ng/mL) were negatively associated with salivary LL-37 levels. CONCLUSIONS Salivary LL-37 level was positively correlated with severe periodontal destruction, and production was apparently associated with periodontopathic bacterial infection. The negative correlations between salivary LL-37 and cotinine levels also suggest that smoking or long-term exposure to environmental tobacco smoke can lead to lower LL-37 levels in the oral cavity and increased risk of periodontitis.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|