1
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
2
|
Xu X, Chen H, Mandal BK, Si Z, Wang J, Wang C. Duplicated Tyr disruption using CRISPR/Cas9 reveals melanophore formation in Oujiang color common carp (Cyprinus carpio var. color). REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Fang J, Chen T, Pan Q, Wang Q. Generation of albino medaka (
Oryzias latipes
) by CRISPR/Cas9. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:242-246. [DOI: 10.1002/jez.b.22808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Jian Fang
- College of FisheriesKey Laboratory of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University Wuhan Hubei China
| | - Tiansheng Chen
- College of FisheriesKey Laboratory of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University Wuhan Hubei China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province Changde China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province Wuhan China
| | - Qihua Pan
- College of FisheriesKey Laboratory of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University Wuhan Hubei China
| | - Qian Wang
- College of FisheriesKey Laboratory of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University Wuhan Hubei China
| |
Collapse
|
5
|
Zhang XT, Wei KJ, Chen YY, Shi ZC, Liu LK, Li J, Zhang GR, Ji W. Molecular cloning and expression analysis of tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco. JOURNAL OF FISH BIOLOGY 2018; 92:979-998. [PMID: 29460483 DOI: 10.1111/jfb.13556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The full-length complementary DNA of two genes related to vertebrate albinism, the tyrosinase gene tyr and tyrosinase-related protein 1 gene tyrp1, were cloned and analysed from normal and albino yellow catfish Tachysurus fulvidraco. The open reading frames (ORF) of tyr and tyrp1 encode putative peptides of 533 and 526 amino acids (amino-acid), both of which possess two conserved copper binding sites. The homologous identities of deduced amino-acid sequences showed that both Tyr and Tyrp1 of T. fulvidraco share considerable similarity with that of channel catfish Ictalurus punctatus. Both tyr and tyrp1 were expressed in a wide range of adult tissues. Tyr gene had the highest expression level in the brain of both normal and albino T. fulvidraco. Tyrp1 had the highest expression level in the skin of normal groups, and the fin of albino groups. The messenger (m)RNA expressions of tyr and tyrp1 were detectable at different early developmental stages and varied with embryonic and larval growth. Tyr and tyrp1 mRNA have obvious tissue specificity both in normal and albino T. fulvidraco and higher expression levels were detected in the normal group revealing that tyr and tyrp1 may have an important role in pigmentation. These results will provide useful data for understanding the molecular mechanism of melanin formation and the occurrence of albinism in T. fulvidraco.
Collapse
Affiliation(s)
- X T Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - K J Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Y Y Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Z C Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - L K Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - J Li
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - G R Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - W Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
7
|
Koga A. Under-representation of repetitive sequences in whole-genome shotgun sequence databases: an illustration using a recently acquired transposable element. Genome 2012; 55:172-5. [PMID: 22321171 DOI: 10.1139/g11-088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely accepted in a conceptual framework that repetitive sequences, especially those with high sequence homogeneity among copies, tend to be under-represented in whole-genome shotgun sequence databases, because of the difficulty of assembling sequence reads into contigs. Although this is easily inferred, there is no quantitative illustration of this phenomenon. An example using a currently used database is expected to contribute to the intuitive understanding of how serious the under-representation is. The present study provides the first quantitative example (in the case of 16 copies of virtually identical, 4.7-kb sequences in a genome of 7 × 10 (8) bp) by comparing the results of BLAST searches of a sequence database (contig N50; 9.8 kb) with those of Southern blot analysis of genomic DNA. This has revealed that the internal regions of the repetitive sequences are under-represented to a striking extent.
Collapse
Affiliation(s)
- Akihiko Koga
- Division of Genome Diversity, Primate Research Institute, Kyoto University, Inuyama City, Japan.
| |
Collapse
|
8
|
Koga A, Wakamatsu Y, Sakaizumi M, Hamaguchi S, Shimada A. Distribution of complete and defective copies of the Tol1 transposable element in natural populations of the medaka fish Oryzias latipes. Genes Genet Syst 2010; 84:345-52. [PMID: 20154421 DOI: 10.1266/ggs.84.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA-based transposable elements are present in the genomes of various organisms, and generally occur in autonomous and nonautonomous forms, with a good correspondence to complete and defective copies, respectively. In vertebrates, however, the vast majority of DNA-based elements occur only in the nonautonomous form. Until now, the only clear exception known has been the Tol2 element of the medaka fish, which still causes mutations in genes of the host species. Here, we report another exception: the Tol1 element of the same species. This element was thought likely to be a "dead" element like the vast majority of vertebrate elements, but recent identification of an autonomous Tol1 copy in a laboratory medaka strain gave rise to the possibility that the element is still "alive" in medaka natural populations. We examined variation in the structure of Tol1 copies through genomic Southern blot analysis, and revealed that 10 of the 32 fish samples examined contained full-length Tol1 copies in their genomes. The frequency at which these copies occur among Tol1 copies is at most 0.5%, yet some of them still have the ability to produce a functional transposase. The medaka fish thus harbors two active DNA-based elements in its genome, and is in this respect unique among vertebrates.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 464-8506, Japan
| | | | | | | | | |
Collapse
|
9
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:215-24. [PMID: 18248196 DOI: 10.1089/zeb.2005.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Tsutsumi M, Imai S, Kyono-Hamaguchi Y, Hamaguchi S, Koga A, Hori H. Color reversion of the albino medaka fish associated with spontaneous somatic excision of the Tol-1 transposable element from the tyrosinase gene. ACTA ACUST UNITED AC 2006; 19:243-7. [PMID: 16704459 DOI: 10.1111/j.1600-0749.2006.00300.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medaka fish albino mutant, i(1) is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol-1. Recently, mosaic black-pigmented i(1) medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol-1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.
Collapse
Affiliation(s)
- Makiko Tsutsumi
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|