1
|
Turri A, Omar O, Trobos M, Thomsen P, Dahlin C. Modulation of gene expression and bone formation by expanded and dense polytetrafluoroethylene membranes during guided bone regeneration: An experimental study. Clin Implant Dent Relat Res 2024; 26:266-280. [PMID: 37357340 DOI: 10.1111/cid.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Nonresorbable membranes promote bone formation during guided bone regeneration (GBR), yet the relationships between membrane properties and molecular changes in the surrounding tissue are largely unknown. AIM To compare the molecular events in the overlying soft tissue, the membrane, and the underlying bone defect during GBR using dual-layered expanded membranes versus dense polytetrafluoroethylene (PTFE) membranes. MATERIALS AND METHODS Rat femur defects were treated with either dense PTFE (d-PTFE) or dual-layered expanded PTFE (dual e-PTFE) or left untreated as a sham. Samples were collected after 6 and 28 days for gene expression, histology, and histomorphometry analyses. RESULTS The two membranes promoted the overall bone formation compared to sham. Defects treated with dual e-PTFE exhibited a significantly higher proportion of new bone in the top central region after 28 days. Compared to that in the sham, the soft tissue in the dual e-PTFE group showed 2-fold higher expression of genes related to regeneration (FGF-2 and FOXO1) and vascularization (VEGF). Furthermore, compared to cells in the d-PTFE group, cells in the dual e-PTFE showed 2.5-fold higher expression of genes related to osteogenic differentiation (BMP-2), regeneration (FGF-2 and COL1A1), and vascularization (VEGF), in parallel with lower expression of proinflammatory cytokines (IL-6 and TNF-α). Multiple correlations were found between the molecular activities in membrane-adherent cells and those in the soft tissue. CONCLUSION Selective surface modification of the two sides of the e-PTFE membrane constitutes a novel means of modulating the tissue response and promoting bone regeneration.
Collapse
Affiliation(s)
- Alberto Turri
- The Brånemark Clinic, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oral, Maxillofacial Surgery and Research and Development, NU-Hospital Organisation, Trollhättan, Sweden
| |
Collapse
|
2
|
Monje A, Pons R, Nart J, Miron RJ, Schwarz F, Sculean A. Selecting biomaterials in the reconstructive therapy of peri-implantitis. Periodontol 2000 2024; 94:192-212. [PMID: 37728141 DOI: 10.1111/prd.12523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Peri-implantitis is a pathogenic inflammatory condition characterized by progressive bone loss and clinical inflammation that may compromise the stability of dental implants. Therapeutic modalities have been advocated to arrest the disorder and to establish peri-implant health. Reconstructive therapy is indicated for bone defects exhibiting contained/angular components. This therapeutic modality is based upon the application of the biological and technical principles of periodontal regeneration. Nonetheless, the comparative efficacy of reconstructive therapy and nonreconstructive modalities remains unclear. Therefore, the aim of this narrative review is to address major clinical concerns regarding the efficacy, effectiveness, and feasibility of using biomaterials in peri-implantitis therapy. In particular, the use of bone grafting materials, barrier membranes, and biologics is comprehensively explored.
Collapse
Affiliation(s)
- Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Ramón Pons
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University, Frankfurt, Germany
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Buser D, Urban I, Monje A, Kunrath MF, Dahlin C. Guided bone regeneration in implant dentistry: Basic principle, progress over 35 years, and recent research activities. Periodontol 2000 2023; 93:9-25. [PMID: 38194351 DOI: 10.1111/prd.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 01/10/2024]
Abstract
Bone augmentation procedures are frequent today in implant patients, since an implant should be circumferentially anchored in bone at completion of bone healing to have a good long-term stability. The best documented surgical technique to achieve this goal is guided bone regeneration (GBR) utilizing barrier membranes in combination with bone fillers. This clinical review paper reflects 35 years of development and progress with GBR. In the 1990s, GBR was developed by defining the indications for GBR, examining various barrier membranes, bone grafts, and bone substitutes. Complications were identified and reduced by modifications of the surgical technique. Today, the selection criteria for various surgical approaches are much better understood, in particular, in post-extraction implant placement. In the majority of patients, biodegradable collagen membranes are used, mainly for horizontal bone augmentation, whereas bioinert PTFE membranes are preferred for vertical ridge augmentation. The leading surgeons are using a composite graft with autogenous bone chips to accelerate bone formation, in combination with a low-substitution bone filer to better maintain the augmented bone volume over time. In addition, major efforts have been made since the millenium change to reduce surgical trauma and patient morbidity as much as possible. At the end, some open questions related to GBR are discussed.
Collapse
Affiliation(s)
- Daniel Buser
- School of Dental Medicine, University of Bern, Bern, Switzerland
- Centre for Implantology Buser and Frei, Bern, Switzerland
| | - Istvan Urban
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, UIC Barcelona, Barcelona, Spain
- Division of Periodontology, CICOM-Monje, Badajoz, Spain
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oral, Maxillofacial Surgery and Research and Development, NU-Hospital Organisation, Trollhättan, Sweden
| |
Collapse
|
4
|
Urban IA, Montero E, Amerio E, Palombo D, Monje A. Techniques on vertical ridge augmentation: Indications and effectiveness. Periodontol 2000 2023; 93:153-182. [PMID: 36721380 DOI: 10.1111/prd.12471] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 02/02/2023]
Abstract
Vertical ridge augmentation techniques have been advocated to enable restoring function and esthetics by means of implant-supported rehabilitation. There are three major modalities. The first is guided bone regeneration, based on the principle of compartmentalization by means of using a barrier membrane, which has been demonstrated to be technically demanding with regard to soft tissue management. This requisite is also applicable in the case of the second modality of bone block grafts. Nonetheless, space creation and maintenance are provided by the solid nature of the graft. The third modality of distraction osteogenesis is also a valid and faster approach. Nonetheless, owing to this technique's inherent shortcomings, this method is currently deprecated. The purpose of this review is to shed light on the state-of-the-art of the different modalities described for vertical ridge augmentation, including the indications, the step-by-step approach, and the effectiveness.
Collapse
Affiliation(s)
- Istvan A Urban
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eduardo Montero
- Department of Periodontics, Universidad Complutense de Madrid, Madrid, Spain
| | - Ettore Amerio
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Palombo
- Department of Periodontics, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci 2022; 23:ijms232314987. [PMID: 36499315 PMCID: PMC9735671 DOI: 10.3390/ijms232314987] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Guided bone regeneration (GBR) has become a clinically standard modality for the treatment of localized jawbone defects. Barrier membranes play an important role in this process by preventing soft tissue invasion outgoing from the mucosa and creating an underlying space to support bone growth. Different membrane types provide different biological mechanisms due to their different origins, preparation methods and structures. Among them, collagen membranes have attracted great interest due to their excellent biological properties and desired bone regeneration results to non-absorbable membranes even without a second surgery for removal. This work provides a comparative summary of common barrier membranes used in GBR, focusing on recent advances in collagen membranes and their biological mechanisms. In conclusion, the review article highlights the biological and regenerative properties of currently available barrier membranes with a particular focus on bioresorbable collagen-based materials. In addition, the advantages and disadvantages of these biomaterials are highlighted, and possible improvements for future material developments are summarized.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
| | - Lu Fan
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | | | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|
6
|
Wang F, Xia D, Wang S, Gu R, Yang F, Zhao X, Liu X, Zhu Y, Liu H, Xu Y, Liu Y, Zhou Y. Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioact Mater 2022; 13:53-63. [PMID: 35224291 PMCID: PMC8844648 DOI: 10.1016/j.bioactmat.2021.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Guided bone regeneration membranes have been effectively applied in oral implantology to repair bone defects. However, typical resorbable membranes composed of collagen (Col) have insufficient mechanical properties and high degradation rate, while non-resorbable membranes need secondary surgery. Herein, we designed a photocrosslinkable collagen/polycaprolactone methacryloyl/magnesium (Col/PCLMA/Mg) composite membrane that provided spatiotemporal support effect after photocrosslinking. Magnesium particles were added to the PCLMA solution and Col/PCLMA and Col/PCLMA/Mg membranes were developed; Col membranes and PCL membranes were used as controls. After photocrosslinking, an interpenetrating polymer network was observed by scanning electron microscopy (SEM) in Col/PCL and Col/PCL/Mg membranes. The elastic modulus, swelling behavior, cytotoxicity, cell attachment, and cell proliferation of the membranes were evaluated. Degradation behavior in vivo and in vitro was monitored according to mass change and by SEM. The membranes were implanted into calvarial bone defects of rats for 8 weeks. The Col/PCL and Col/PCL/Mg membranes displayed much higher elastic modulus (p < 0.05), and a lower swelling rate (p < 0.05), than Col membranes, and there were no differences in cell biocompatibility among groups (p > 0.05). The Col/PCL and Col/PCL/Mg membranes had lower degradation rates than the Col membranes, both in vivo and in vitro (p < 0.05). The Col/PCL/Mg groups showed enhanced osteogenic capability compared with the Col groups at week 8 (p < 0.05). The Col/PCL/Mg composite membrane represents a new strategy to display space maintenance and enhance osteogenic potential, which meets clinical needs. Photocrosslinked Col/PCL and Col/PCL/Mg membranes displayed good mechanical support to provide space for bone regeneration. Col/PCL and Col/PCL/Mg membranes had suitable degradation rates for the maintenance duration of bone regeneration. Photocrosslinked Col/PCL/Mg membranes enhanced osteogenesis and expedited the formation of high-quality bone on week 8.
Collapse
|
7
|
Abstract
The ultimate goal in periodontal therapy is the complete re-establishment of the lost tissues. Dental researchers and clinicians are continuously working to develop current therapeutic techniques and technologies that can regenerate damaged periodontal tissues. Predicting the outcome of the treatment is a challenging endeavor, because a variety of local and systemic variables can affect the success of the applied regenerative therapy. To real-time monitor the biological changes during periodontitis or after periodontal treatment, various biomarkers have been studied in periodontology. This article discusses the available evidence on the use of biomarkers in the detection of periodontal regeneration.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland.
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| |
Collapse
|
8
|
Texturized P(VDF-TrFE)/BT membrane enhances bone neoformation in calvaria defects regardless of the association with photobiomodulation therapy in ovariectomized rats. Clin Oral Investig 2021; 26:1053-1065. [PMID: 34370100 DOI: 10.1007/s00784-021-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.
Collapse
|
9
|
Arabaci T, Albayrak M. Titanium-prepared platelet-rich fibrin provides advantages on periodontal healing: A randomized split-mouth clinical study. J Periodontol 2019; 89:255-264. [PMID: 29543995 DOI: 10.1002/jper.17-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of this study to evaluate the contributions of titanium-prepared platelet-rich fibrin (T-PRF) combined with open flap debridement (OFD) on biological markers in gingival crevicular fluid (GCF)and periodontal outcomes. METHODS Twenty-nine participants with chronic periodontitis were treated either with autologous T-PRF+OFD or OFD alone. GCF growth factor levels and relative receptor activator nuclear factor kappa-B/osteoprotegerin (RANKL/OPG) ratio at baseline and 2, 4, and 6 weeks postoperatively were analyzed, and clinical parameters such as probing depth (PD), relative attachment level (RAL) and gingival margin level (GML) at baseline and 9 months after surgery were compared. RESULTS The mean PD reduction, RAL gain, and GML change were significantly greater in the OFD+T-PRF sites than in the OFD sites (P = 0.033, P = 0.029, and P = 0.026, respectively). Both groups demonstrated increased growth factor levels at week 2 compared with baseline, followed by reductions at weeks 4 and 6. GCF growth factor levels in the test group were seen at higher concentrations with respect to control group until 6 weeks post-surgery. During this 6-week period, relative RANKL/OPG ratio was found significantly lower in the OFD+T-PRF group compared to the OFD group(P < 0.05). CONCLUSIONS Using T-PRF membrane combined with OFD provided significantly higher concentrations of growth factors and lower RANKL/OPG ratio in GCF for approximately 4 to 6 weeks, and improved periodontal healing compared to conventional flap sites.
Collapse
Affiliation(s)
- Taner Arabaci
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Mevlut Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Ataturk University, Erzurum, Turkey
| |
Collapse
|
10
|
Sallum EA, Ribeiro FV, Ruiz KS, Sallum AW. Experimental and clinical studies on regenerative periodontal therapy. Periodontol 2000 2019; 79:22-55. [PMID: 30892759 DOI: 10.1111/prd.12246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of a periodontal therapy as a regenerative procedure requires the demonstration of new cementum, periodontal ligament, and bone coronal to the base of the defect. A diversity of regenerative strategies has been evaluated, including root surface conditioning, bone grafts and bone substitute materials, guided tissue regeneration, enamel matrix proteins, growth/differentiation factors, combined therapies and, more recently, tissue-engineering approaches. The aim of this chapter of Periodontology 2000 is to review the research carried out in Latin America in the field of periodontal regeneration, focusing mainly on studies using preclinical models (animal models) and randomized controlled clinical trials. This review may help clinicians and researchers to evaluate the current status of the therapies available and to discuss the challenges that must be faced in order to achieve predictable periodontal regeneration in clinical practice.
Collapse
Affiliation(s)
- Enilson A Sallum
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Fernanda V Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Karina S Ruiz
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Antonio W Sallum
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
11
|
Expression of gingival crevicular fluid markers during early and late healing of intrabony defects after surgical treatment: a systematic review. Clin Oral Investig 2019; 24:487-502. [PMID: 31696319 DOI: 10.1007/s00784-019-03088-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Surgical treatments such as guided tissue regeneration (GTR) and access flap surgery are widely employed for the treatment of intrabony defects. However, little is known regarding the postoperative expression of gingival crevicular fluid (GCF) markers. OBJECTIVE The aim of this systematic review was to compare the expression of GCF markers following treatment of periodontal intrabony defects with guided tissue regeneration or access surgery. The association of the markers' expression with the clinical outcome was also assessed. METHODS An electronic literature search was conducted in MEDLINE, EMBASE, OpenGrey, LILACS and Cochrane Library up to December 2018 complemented by a manual search. Human, prospective clinical studies were identified. The changes from baseline up to 30 days (early healing) and 3 months (late healing) were assessed. RESULTS A total of 164 publications were identified and reviewed for eligibility. Of these, 10 publications fulfilled the inclusion criteria. The included studies evaluated 15 different GCF markers with a follow-up time between 21 and 360 days postoperatively. PDGF, VEGF and TIMP-1 changes were often investigated in the included studies; however, contrasting results were reported. Two studies agreed that both GTR and OFD lead to similar OPG level changes. TGF-β1 is increased early postoperatively, irrespective of the surgical technique employed. CONCLUSION There is limited evidence available on the expression of GCF markers after surgical interventions of intrabony periodontal defects. However, OPG and TGF-β1 tend to increase early post-operatively, irrespective of the surgical technique employed, irrespective of the surgical technique employed. CLINICAL RELEVANCE More well-designed, powered studies with sampling periods reflecting the regenerative process are needed, and future research should focus on employing standardised protocols for collecting, storing and analysing GCF markers.
Collapse
|
12
|
Adipose-derived stem cells prevent the onset of bisphosphonate-related osteonecrosis of the jaw through transforming growth factor β-1-mediated gingival wound healing. Stem Cell Res Ther 2019; 10:169. [PMID: 31196208 PMCID: PMC6567445 DOI: 10.1186/s13287-019-1277-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Due to its complex pathogenesis and low clinical cure rate, bisphosphonate-related osteonecrosis of the jaw (BRONJ) poses a substantial challenge for oral and maxillofacial surgeons. Therefore, the treatment of BRONJ should focus on prevention. In clinical studies, primary wound closure can significantly reduce the incidence of BRONJ. Whether local stem cell transplantation can promote primary gingival healing in patients with a medication history and prevent BRONJ has not been reported. Methods In this study, animals were divided into a healthy group (non-drug treatment), a BP group, a hydroxyapatite (HA) group, and an adipose-derived stem cell (ADSC) group. All groups except the healthy group were treated with BPs and immunosuppressive drugs once per week for 8 weeks, simulating clinical use for the treatment of cancer patients with bone metastasis, to induce BRONJ-like animals. After the sixth drug treatment, the bilateral premolars were extracted in all groups. In contrast to the healthy and BP groups, the extraction sockets in the HA and ADSC groups were filled with HA or HA + ADSCs simultaneously post extraction to observe the preventive effect of ADSCs on the occurrence of BRONJ. At 2 and 8 weeks post extraction, animals from all groups were sacrificed. Results At 8 weeks post transplantation, ADSCs prevented the occurrence of BRONJ, mainly through accelerating healing of the gingival epithelium at 2 weeks post extraction. We also found that ADSCs could upregulate the expression of transforming growth factor β1 (TGF-β1) and fibronectin in tissue from animals with a medication history by accelerating gingival healing of the extraction socket. A rescue assay further demonstrated that TGF-β1 and fibronectin expression decreased in TGF-β1-deficient ADSC-treated animals, which partially abolished the preventive effect of ADSCs on the onset of BRONJ. Conclusion ADSCs prevent the onset of BRONJ, mainly by upregulating the expression of TGF-β1 and fibronectin to promote primary gingival healing, ultimately leading to bone regeneration in the tooth extraction socket. Our new findings provide a novel stem cell treatment for the prevention of BRONJ. Electronic supplementary material The online version of this article (10.1186/s13287-019-1277-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: More than the barrier effect? J Clin Periodontol 2019; 46 Suppl 21:103-123. [PMID: 30667525 PMCID: PMC6704362 DOI: 10.1111/jcpe.13068] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
AIM To review the knowledge on the mechanisms controlling membrane-host interactions in guided bone regeneration (GBR) and investigate the possible role of GBR membranes as bioactive compartments in addition to their established role as barriers. MATERIALS AND METHODS A narrative review was utilized based on in vitro, in vivo and available clinical studies on the cellular and molecular mechanisms underlying GBR and the possible bioactive role of membranes. RESULTS Emerging data demonstrate that the membrane contributes bioactively to the regeneration of underlying defects. The cellular and molecular activities in the membrane are intimately linked to the promoted bone regeneration in the underlying defect. Along with the native bioactivity of GBR membranes, incorporating growth factors and cells in membranes or with graft materials may augment the regenerative processes in underlying defects. CONCLUSION In parallel with its barrier function, the membrane plays an active role in hosting and modulating the molecular activities of the membrane-associated cells during GBR. The biological events in the membrane are linked to the bone regenerative and remodelling processes in the underlying defect. Furthermore, the bone-promoting environments in the two compartments can likely be boosted by strategies targeting both material aspects of the membrane and host tissue responses.
Collapse
Affiliation(s)
- Omar Omar
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ibrahim Elgali
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christer Dahlin
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Oral Maxillofacial Surgery/ENTNU‐Hospital OrganisationTrollhättanSweden
| | - Peter Thomsen
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125:315-337. [PMID: 28833567 PMCID: PMC5601292 DOI: 10.1111/eos.12364] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non‐osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.
Collapse
Affiliation(s)
- Ibrahim Elgali
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Maxillofacial Surgery/ENT, NU-Hospital organisation, Trollhättan, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Scalize PH, Bombonato-Prado KF, de Sousa LG, Rosa AL, Beloti MM, Semprini M, Gimenes R, de Almeida ALG, de Oliveira FS, Hallak Regalo SC, Siessere S. Poly(Vinylidene Fluoride-Trifluorethylene)/barium titanate membrane promotes de novo bone formation and may modulate gene expression in osteoporotic rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:180. [PMID: 27770393 DOI: 10.1007/s10856-016-5799-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/14/2016] [Indexed: 05/20/2023]
Abstract
Osteoporosis is a chronic disease that impairs proper bone remodeling. Guided bone regeneration is a surgical technique that improves bone defect in a particular region through new bone formation, using barrier materials (e.g. membranes) to protect the space adjacent to the bone defect. The polytetrafluorethylene membrane is widely used in guided bone regeneration, however, new membranes are being investigated. The purpose of this study was to evaluate the effect of P(VDFTrFE)/BT [poly(vinylidene fluoride-trifluoroethylene)/barium titanate] membrane on in vivo bone formation. Twenty-three Wistar rats were submitted to bilateral ovariectomy. Five animals were subjected to sham surgery. After 150 days, bone defects were created and filled with P(VDF-TrFE)/BT membrane or PTFE membrane (except for the sham and OVX groups). After 4 weeks, the animals were euthanized and calvaria samples were subjected to histomorphometric and computed microtomography analysis (microCT), besides real time polymerase chain reaction (real time PCR) to evaluate gene expression. The histomorphometric analysis showed that the animals that received the P(VDF-TrFE)/BT membrane presented morphometric parameters similar or even better compared to the animals that received the PTFE membrane. The comparison between groups showed that gene expression of RUNX2, BSP, OPN, OSX and RANKL were lower on P(VDF-TrFE)/BT membrane; the gene expression of ALP, OC, RANK and CTSK were similar and the gene expression of OPG, CALCR and MMP9 were higher when compared to PTFE. The results showed that the P(VDF-TrFE)/BT membrane favors bone formation, and therefore, may be considered a promising biomaterial to support bone repair in a situation of osteoporosis.
Collapse
Affiliation(s)
- Priscilla Hakime Scalize
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Karina F Bombonato-Prado
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Gustavo de Sousa
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Semprini
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Rossano Gimenes
- Federal University of Itajubá (UNIFEI), Itajubá, Minas Gerais, Brazil
| | - Adriana L G de Almeida
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Selma Siessere
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Estanislau IMG, Terceiro IRC, Lisboa MRP, Teles PDB, Carvalho RDS, Martins RS, Moreira MMSM. Pleiotropic effects of statins on the treatment of chronic periodontitis--a systematic review. Br J Clin Pharmacol 2015; 79:877-85. [PMID: 25444240 PMCID: PMC4456120 DOI: 10.1111/bcp.12564] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/26/2014] [Indexed: 12/23/2022] Open
Abstract
AIM Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase and are an important group of hypolipidaemic drugs, widely used in the treatment of hypercholesterolaemia and cardiovascular disease. Some studies have shown that statins are able to modulate inflammation and alveolar bone loss. METHODS In order to evaluate whether statins could influence periodontal treatment, improving the clinical and radiographic parameters in chronic periodontitis, a systematic review was conducted in the databases PUBMED and BIREME, searching for articles in English and Portuguese, published between the years 2004 and 2014, using the combined keywords statin, periodontal disease, periodontitis and alveolar bone. Studies regarding the treatment of chronic periodontitis in humans, blind or double-blind, retrospective cohort or randomized controlled trials that used statins topically or systemically were selected. RESULTS Statins have important anti-inflammatory and immune effects, reducing levels of C-reactive protein and matrix metalloproteinases and their intermediate products, such as tumour necrosis factor-α, and are also able to inhibit the adhesion and extravasation of leukocytes, which block the co-stimulation of T cells. Statins reduce bone resorption by inhibiting osteoclast formation and lead to increased apoptosis of these cells. The effect of statins on bone formation is related to the increased gene expression of bone morphogenetic protein in osteoblasts. CONCLUSION Although we found biological mechanisms and clinical results that show lower alveolar bone loss and reduction of clinical signs of inflammation, further studies are needed to evaluate the clinical applicability of statins in the routine treatment of chronic periodontitis.
Collapse
Affiliation(s)
- Ilanna Mara Gomes Estanislau
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | | | | | | | - Rosimary de Sousa Carvalho
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | - Ricardo Souza Martins
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | | |
Collapse
|
17
|
Fleischmann L, Crismani A, Falkensammer F, Bantleon HP, Rausch-Fan X, Andrukhov O. Behavior of osteoblasts on TI surface with two different coating designed for orthodontic devices. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5335. [PMID: 25577216 DOI: 10.1007/s10856-014-5335-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/28/2014] [Indexed: 06/04/2023]
Abstract
In the present study we coated Ti surfaces with polytetrafluorethylene (PTFE) and titanium nitride (TiN) and investigated in vitro the behavior of osteoblasts on these surfaces. MG-63 osteoblasts were cultured on titanium discs with different surface treatment: uncoated Ti6Al4V, TiN-coated, PTFE-coated. Cell viability/proliferation was detected by MTT assay. Gene-expression levels of alkaline phosphatase (ALP), osteocalcin (OC), type I collagen, receptor activator of nuclear factor-kappa-B ligand (RANKL), and osteoprotegerin (OPG) were determined by qPCR. Cell behavior on different surfaces was observed by time-lapse microscopy. Cells grown on PTFE-coated Ti surface exhibited delayed surface attachment and decreased proliferation after 48 h. However, after 168 h of culture cells grown on PTFE-coated surface exhibited higher viability/proliferation, higher expression levels of ALP and OC, and higher OPG/RANKL ratio compared to uncoated surface. No effect of TiN-coating on any investigated parameter was found. Our results shows that PTFE coating exhibits no toxic effect on MG-63 cells and slightly stimulates expression of several genes associated with osteogenesis. We propose that PTFE coating could be considered as a possible choice for a surface treatment of temporary skeletal anchorage devices in orthodontics.
Collapse
Affiliation(s)
- Leonardo Fleischmann
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Lopes HB, Santos TDS, de Oliveira FS, Freitas GP, de Almeida ALG, Gimenes R, Rosa AL, Beloti MM. Poly(vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation. J Biomater Appl 2013; 29:104-12. [DOI: 10.1177/0885328213515735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we evaluated the effect of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane on in vivo bone formation. Rat calvarial bone defects were implanted with P(VDF-TrFE)/BT and polytetrafluoroethylene (PTFE) membranes, and at 4 and 8 weeks, histomorphometric and gene expression analyses were performed. A higher amount of bone formation was noticed on P(VDF-TrFE)/BT compared with PTFE. The gene expression of RUNX2, bone sialoprotein, osteocalcin, receptor activator of nuclear factor-kappa B ligand, and osteoprotegerin indicates that P(VDF-TrFE)/BT favored the osteoblast differentiation compared with PTFE. These results evidenced the benefits of using P(VDF-TrFE)/BT to promote new bone formation, which may represent a promising alternative to be employed in guided bone regeneration.
Collapse
Affiliation(s)
- Helena B Lopes
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago de S Santos
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiola S de Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade P Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana LG de Almeida
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rossano Gimenes
- Institute of Physics and Chemistry, Federal University of Itajubá, Itajubá, MG, Brazil
| | - Adalberto L Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Jenabian N, Haghanifar S, Maboudi A, Bijani A. Clinical and radiographic evaluation of Bio-Gen with biocollagen compared with Bio-Gen with connective tissue in the treatment of class II furcation defects: a randomized clinical trial. J Appl Oral Sci 2013; 21:422-9. [PMID: 24212988 PMCID: PMC3881845 DOI: 10.1590/1679-775720130113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/02/2013] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Treatment of furcation defects are thought to be challenging. The purpose of this study was to evaluate the clinical and radiographic parameters of Bio-Gen with Biocollagen compared with Bio-Gen with connective tissue in the treatment of Class II furcation defects. MATERIAL AND METHODS In this clinical trial, 24 patients with Class II furcation defect on a buccal or lingual mandibular molar were recruited. After oral hygiene instruction, scaling and root planing and achievement of acceptable plaque control, the patients were randomly chosen to receive either connective tissue and Bio-Gen (case group) or Biocollagen and Bio-Gen (control group). The following parameters were recorded before the first and re-entry surgery (six months later): vertical clinical attachment level (VCAL), gingival index (GI), plaque index (PI), horizontal probing depth (HPD), vertical probing depth (VPD), gingival recession (GR), furcation vertical component (FVC), furcation to alveolar crest (FAC), fornix to base of defect (FBD), and furcation horizontal component (FHC) were calculated at the time of first surgery and during re-entry. A digital periapical radiograph was taken in parallel before first surgery and re-entry. The radiographs were then analyzed by digital subtraction. The differences with p value <0.05 were considered significant. RESULTS Only the mean changes of FAC, FHC, mean of FHC, FBD in re-entry revealed statistically significant differences between the two groups. HPD, VPD, FBD, FAC, and FHC showed statistically significant differences after 6 months in the case group. However, in the control group, statistically significant differences were found in GR and HPD. We did not observe any significant difference in radiographic changes among the two groups. CONCLUSION The results of this trial indicate that better clinical outcomes can be obtained with connective tissue grafts in combination with bone material compared with a resorbable barrier with bone material. The differences in radiographic changes between the two groups, however, were not statistically significant.
Collapse
Affiliation(s)
- Niloofar Jenabian
- Department of Periodontics, Dental Faculty, Dental Materials Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | | | | |
Collapse
|
20
|
Andrade PF, Garlet GP, Silva JS, Fernandes PG, Milanezi C, Novaes AB, Palioto DB, Grisi MF, Taba M, Souza SL. Adjunct effect of the antimicrobial photodynamic therapy to an association of non-surgical and surgical periodontal treatment in modulation of gene expression: A human study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:119-25. [DOI: 10.1016/j.jphotobiol.2013.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/27/2013] [Accepted: 06/22/2013] [Indexed: 12/13/2022]
|
21
|
Souza SLS, Andrade PF, Silva JS, Tristão FSM, Rocha FA, Palioto DB, Grisi MFM, Taba M, Novaes AB. Effects of Antimicrobial Photodynamic Therapy on Transforming Growth Factor-β1 Levels in the Gingival Crevicular Fluid. Photomed Laser Surg 2013; 31:65-71. [DOI: 10.1089/pho.2012.3328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sérgio L. S. Souza
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrícia F. Andrade
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João S. Silva
- Department of Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabrine S. M. Tristão
- Department of Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda A. Rocha
- Department of Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela B. Palioto
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio F. M. Grisi
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mário Taba
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arthur B. Novaes
- Department of Bucco-Maxillo-Facial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Liu S, Bertl K, Sun H, Liu ZH, Andrukhov O, Rausch-Fan X. Effect of simvastatin on the osteogenetic behavior of alveolar osteoblasts and periodontal ligament cells. Hum Cell 2012; 25:29-35. [PMID: 22399266 DOI: 10.1007/s13577-011-0028-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/21/2011] [Indexed: 10/28/2022]
Abstract
Statins are routinely used in the clinic as cholesterol lowering drugs, but recently they were reported to also have anabolic effects on bone tissue. Since regeneration of alveolar bone is one of the primary aims of periodontal treatment, in the present study we investigated the effects of simvastatin, a lipophilic statin, on primary alveolar osteoblasts (AOBs) and periodontal ligament cells (PDLs) in vitro. The effect of simvastatin (1-100 nM) on the cells proliferation/viability after 24, 48, and 72 h stimulation was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT)-assay. The alkaline phosphatase (ALP) activity was measured after stimulation with simvastatin using specific colorimetric assay. Finally, the mRNA expression levels of osteocalcin (OC), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG) were measured by real-time PCR. The proliferation/viability of AOBs was significantly decreased by all simvastatin concentrations after 72 h stimulation. The proliferation/viability of PDLs was not influenced by simvastatin. ALP activity of AOBs and PDLs was increased by 1 and 100 nM simvastatin, respectively. Simvastatin induced a dose-dependent increase in OC mRNA expression of AOBs and did not influence that in PDLs. RANKL expression of AOBs was increased at all tested simvastatin concentrations and that in PDLs was increased by higher simvastatin concentrations (10-100 nM). Finally, the expression of OPG in AOBs and PDLs was stimulated by 1-10 and 100 nM simvastatin, respectively. Simvastatin seems to slightly increase the expression of osteogenic markers in AOBs and PDLs, indicating its ability to influence alveolar bone formation and periodontal regeneration.
Collapse
Affiliation(s)
- Shutai Liu
- Department of Periodontology, Bernhard Gottlieb University School of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Teixeira LN, Crippa GE, Gimenes R, Zaghete MA, de Oliveira PT, Rosa AL, Beloti MM. Response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate membrane. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:151-158. [PMID: 21107658 DOI: 10.1007/s10856-010-4189-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/10/2010] [Indexed: 05/30/2023]
Abstract
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron- and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Collapse
Affiliation(s)
- L N Teixeira
- Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Yongchaitrakul T, Manokawinchoke J, Pavasant P. Osteoprotegerin induces osteopontin via syndecan-1 and phosphoinositol 3-kinase/Akt in human periodontal ligament cells. J Periodontal Res 2009; 44:776-83. [PMID: 19602124 DOI: 10.1111/j.1600-0765.2008.01190.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Our previous study found that thrombin induced osteoprotegerin synthesis in human periodontal ligament cells. As elevated levels of osteoprotegerin can exert biological effects on various cell types, in the present study we investigated the effect of osteoprotegerin on the expression of osteopontin in human periodontal ligament cells. MATERIAL AND METHODS Cultured human periodontal ligament cells were treated with recombinant human osteoprotegerin (0-100 ng/mL) for 24-48 h. The expression of osteopontin mRNA and protein was analyzed using reverse transcription-polymerase chain reaction and western blot analyses, respectively. Phosphoinositol 3-kinase inhibitor, Akt inhibitor, heparinase, neutralizing antibody against receptor activator of nuclear factor-kappaB ligand (RANKL) and syndecan-1, and small interfering RNA against syndecan-1, were used to determine the mechanism involved. RESULTS Osteoprotegerin up-regulated the mRNA and protein expression of osteopontin in human periodontal ligament cells in a dose-dependent manner. Addition of neutralizing antibody against RANKL attenuated the inductive effect of osteoprotegerin on osteopontin expression. In addition, the inductive effect of osteoprotegerin was abolished by phosphoinositol 3-kinase and Akt inhibitors, as well as by syndecan-1 antibody or syndecan-1 small interfering RNA. None of the inhibitors had any effect on the background level of osteopontin expression. CONCLUSION An increased level of osteoprotegerin can generate signals via a RANKL/syndecan-1/phosphoinositol 3-kinase/Akt pathway. The results also suggest that osteopontin is one of the downstream targets of the pathway mediated by osteoprotegerin in human periodontal ligament cells. Thus, in addition to counteracting RANKL in the RANKL-osteoprotegerin system, osteoprotegerin may play a role in periodontal tissue remodeling through modulation of the extracellular matrix.
Collapse
Affiliation(s)
- T Yongchaitrakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|