1
|
Xue P, Li B, An Y, Sun J, He X, Hou R, Dong G, Fei D, Jin F, Wang Q, Jin Y. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation. Cell Death Differ 2016; 23:1862-1872. [PMID: 27447113 DOI: 10.1038/cdd.2016.74] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023] Open
Abstract
The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.
Collapse
Affiliation(s)
- Peng Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guangying Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China
| | - Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Noguchi K, Miwa Y, Sunohara M, Sato I. Analysis of vascular distribution and growth factors in human gingival tissue associated with periodontal probing depth. Okajimas Folia Anat Jpn 2011; 88:75-83. [PMID: 22184869 DOI: 10.2535/ofaj.88.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel endothelium. Tissue levels of this angiogenesis marker are unknown in human gingival tissue, as is the correlation between vascular growth factors and hypoxia-inducible factor. We examined the expression of VEGF, type III tyrosine kinase receptors (VEGF-R2), platelet-endothelial cell adhesion molecule (CD31) and hypoxia-inducible factor (HIF) mRNA from human gingival tissue of the oral cavity. Tissue samples were from a small quantity of gingival sample biopsy with gingival sulcular depth (GSD) < 2 mm (Group 1), 2 to 4 mm (Group 2), and > 4 mm (Group 3). We found that the levels of VEGF-R2, CD31 and HIF mRNA were higher in the gingival tissue of Group 2 than that of Group 1, and VEGF in the Group 3 was also higher than that of Group 1. The different mRNA levels of these markers may reflect the mRNA levels reflect the vasculature state of gingival tissue based on GSD. VEGF-R2 and HIF also indicate the presence of an elongated blood vessel in the gingival tissue. In the early stage of angiogenesis, VEGF-R2 leads to expression of VEGF, and HIF-1 mediates increased VEGF expression in response to hypoxia in swollen tissues or during the expansion of periodontal tissues, which is useful in the early diagnosis of periodontal diseases.
Collapse
Affiliation(s)
- Kenzo Noguchi
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | |
Collapse
|