Yen CY, Chiang WF, Liu SY, Cheng PC, Lee SY, Hong WZ, Lin PY, Lin MH, Liu YC. Long-term stimulation of areca nut components results in increased chemoresistance through elevated autophagic activity.
J Oral Pathol Med 2013;
43:91-6. [PMID:
23795940 DOI:
10.1111/jop.12102]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND
We previously demonstrated the autophagy-inducing activity in the crude extract of areca nut (ANE) and its 30-100 kDa fraction (ANE 30-100 K). This study aimed to analyze whether chronic ANE and ANE 30-100 K stimulations lead to higher stress resistance and autophagic activity in oral cells, and whether the resulting autophagic status in stimulated cells correlates with stress resistance.
MATERIALS AND METHODS
Malignant cells from the mouth oral epidermoid carcinoma Meng-1 (OECM-1) and blood (Jurkat T) origins were stimulated with non-cytotoxic ANE and ANE 30-100 K for 3 months. Sensitivity to anticancer drugs of and autophagy status in stimulated cells, analyzed respectively by XTT assay and calculating microtubule-associated protein 1 light chain 3-II LC3-II/β-actin ratios from Western blot, were compared to non-treated cells. Autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), were used to assess whether autophagy inhibition interferes the altered chemoresistance.
RESULTS
Areca nut extract-stimulated (ANE-s) and ANE 30-100 K-stimulated (30-100 K-s) OECM-1 and Jurkat T cells generally exhibited higher cisplatin and 5-fluorouracil (5-FU) resistances, compared to non-stimulated cells. Most stimulated cells expressed significantly higher levels of LC3-II and Atg4B proteins. Interestingly, these cells also showed stronger tolerances against hypoxia environment and expressed higher LC3-II levels under glucose-deprived and hypoxia conditions. Finally, both 3-MA and CQ alleviated, albeit to different degrees, the increased chemoresistance in ANE-s and/or 30-100 K-s cells.
CONCLUSIONS
Chronic stimulations of ANE or ANE 30-100 K may increase tolerance of oral cancer and leukemia T cells to anticancer drugs, as well as to glucose deprivation and hypoxia conditions, and cause an elevation of autophagy activity responsible for increased drug resistance.
Collapse