1
|
Helal MB, Alsherif AA. The ameliorating role of epithelial cell rests of Malassez in the alleviation of experimentally-induced periodontitis in rats. Arch Oral Biol 2023; 149:105658. [PMID: 36867954 DOI: 10.1016/j.archoralbio.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE The present study aimed to investigate the effect of experimentally-induced periodontitis on epithelial cell rests of Malassez (ERM) distribution and its subsequent role in regenerating periodontal ligament (PDL). DESIGN The study included 60 rats, aged seven months, randomly and equally divided into two groups: Group I, the control group, and Group II, the experimental group, in which ligature-periodontitis was induced. Ten rats from each group were euthanized at 1, 2, and 4 weeks. For ERM detection, specimens were processed for histological and immunohistochemical examination of cytokeratin-14. Additionally, specimens were prepared for the transmission electron microscope. RESULTS Group I demonstrated well-organized PDL fibers with few ERM clumps close to the cervical root portion. In contrast, one week after periodontitis induction, Group II showed marked degeneration, a damaged cluster of ERM cells, narrowing of the PDL space, and early signs of PDL hyalinization. After two weeks, a disorganized PDL was observed with the detection of small ERM clumps enclosing very few cells. After four weeks, PDL fibers were reorganized, and ERM clusters increased significantly. Notably, ERM cells were positive for CK14 in all groups. CONCLUSION Early-stage ERM may be affected by periodontitis. However, ERM is capable of recovering its putative role in PDL maintenance.
Collapse
Affiliation(s)
| | - Aya Anwar Alsherif
- Lecturer of Oral Biology, Faculty of Dentistry, Tanta University, Egypt.
| |
Collapse
|
2
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Hou M, Liu S, Yan K, Sun Z, Li S. Downregulation of Odontogenic Ameloblast-associated Protein in the Progression of Periodontal Disease Affects Cell Adhesion, Proliferation, and Migration. Arch Oral Biol 2022; 145:105588. [DOI: 10.1016/j.archoralbio.2022.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
4
|
Zhu S, Xiang C, Charlesworth O, Bennett S, Zhang S, Zhou M, Kujan O, Xu J. The versatile roles of odontogenic ameloblast-associated protein in odontogenesis, junctional epithelium regeneration and periodontal disease. Front Physiol 2022; 13:1003931. [PMID: 36117697 PMCID: PMC9478555 DOI: 10.3389/fphys.2022.1003931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional epithelium (JE) is a vital epithelial component which forms an attachment to the tooth surface at the gingival sulcus by the adhesion of protein complexes from its basal layer. Disruption of the JE is associated with the development of gingivitis, periodontal disease, and alveolar bone loss. Odontogenic ameloblast-associated (ODAM) is comprised of a signal peptide and an ODAM protein with 12 putative glycosylation sites. It is expressed during odontogenesis by maturation stage ameloblasts and is incorporated into the enamel matrix during the formation of outer and surface layer enamel. ODAM, as a secreted protein which is accumulated at the interface between basal lamina and enamel, mediates the adhesion of the JE to the tooth surface; and is involved with extracellular signalling of WNT and ARHGEF5-RhoA, as well as intracellular signalling of BMP-2-BMPR-IB-ODAM. ODAM is also found to be highly expressed in salivary glands and appears to have implications for the regulation of formation, repair, and regeneration of the JE. Bioinformatics and research data have identified the anti-cancer properties of ODAM, indicating its potential both as a prognostic biomarker and therapeutic target. Understanding the biology of ODAM will help to design therapeutic strategies for periodontal and dental disorders.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Chuan Xiang
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Oscar Charlesworth
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sijuan Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Maio Zhou
- Department of Stomatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
5
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
6
|
Takada K, Chiba T, Miyazaki T, Yagasaki L, Nakamichi R, Iwata T, Moriyama K, Harada H, Asahara H. Single Cell RNA Sequencing Reveals Critical Functions of Mkx in Periodontal Ligament Homeostasis. Front Cell Dev Biol 2022; 10:795441. [PMID: 35186919 PMCID: PMC8854991 DOI: 10.3389/fcell.2022.795441] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The periodontal ligament (PDL) comprises a fibrous tissue that connects teeth to alveolar bone and is essential for periodontal function. The transcription factor mohawk homeobox (Mkx) is expressed in the PDL where it plays an important role in the development and maintenance of the PDL. However, the precise and critical functions of Mkx in the cell populations comprising PDL have not yet been elucidated. The present study aimed to clarify the effects of a Mkx deficiency on PDL cellular heterogeneity and differences between gene expression in PDL tissues from wild-type (WT) (Mkx+/+) and Mkx knockout (Mkx−/−) rats using single-cell RNA sequencing. We identified 12 cell clusters comprising mesenchymal cells and macrophages. The expression of Mkx and scleraxis (Scx; another key transcription factor of PDL), was mutually exclusive, and partitioned mesenchymal cell clusters into Mkx and Scx types that dominantly expressed proteoglycans and elastic fibers, and type 1 and 3 collagen, respectively. Ossification-related genes were upregulated in mesenchymal cell and osteoblast clusters with more Mkx−/− than Mkx+/+ PDLs. Increased number of cells and inflammatory mediators were observed in macrophage clusters of Mkx−/− PDL. These results suggested that Mkx plays an important role in maintaining PDL homeostasis by regulating specific cell populations and gene expression.
Collapse
Affiliation(s)
- Kaho Takada
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Takayuki Miyazaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Lisa Yagasaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Ryo Nakamichi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Hiroshi Asahara,
| |
Collapse
|
7
|
Koidou VP, Argyris PP, Skoe EP, Mota Siqueira J, Chen X, Zhang L, Hinrichs JE, Costalonga M, Aparicio C. Peptide coatings enhance keratinocyte attachment towards improving the peri-implant mucosal seal. Biomater Sci 2018; 6:1936-1945. [PMID: 29850754 PMCID: PMC6019193 DOI: 10.1039/c8bm00300a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a critical need for preventing peri-implantitis as its prevalence has increased and dental implants lack features to prevent it. Research strategies to prevent peri-implantitis have focused on modifying dental implants to incorporate different antimicrobial agents. An alternative strategy consists of barring the expansion of the biofilm subgingivally by forming a long-lasting permucosal seal between the soft tissue and the implant surface. Here, we innovatively biofunctionalized titanium with bioinspired peptide coatings to strengthen biological interactions between epithelial cells and the titanium surface. We selected laminin 332- and ameloblastin-derived peptides (Lam, Ambn). Laminin 332 participates in the formation of hemidesmosomes by keratinocytes and promotes epithelial attachment around teeth; and ameloblastin, an enamel derived protein, is involved in tissue regeneration events following disruption of the periodontium. Lam, Ambn or combinations of both peptides were covalently immobilized on titanium discs. Successful immobilization of the peptides was confirmed by contact angle goniometry, X-ray photoelectron spectroscopy and fluorescent labelling of the peptides. Additionally, we confirmed the mechanical and thermochemical stability of the peptides on Ti substrates. Proliferation and hemidesmosome formation of human keratinocytes (TERT-2/OKF-6) were assessed by immunofluorescence labelling. The peptide-coated surfaces increased cell proliferation for up to 48 h in culture compared to control surfaces. Most importantly, formation of hemidesmosomes by keratinocytes was significantly increased on surfaces coated with Ambn + Lam peptides compared to control (p < 0.01) and monopeptide coatings (p < 0.005). Together, these results support the Ambn + Lam multipeptide coating as a promising candidate for inducing a permucosal seal around dental implants.
Collapse
Affiliation(s)
- Vasiliki P Koidou
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakayama Y, Matsui S, Noda K, Yamazaki M, Iwai Y, Matsumura H, Izawa T, Tanaka E, Ganss B, Ogata Y. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells. Apoptosis 2018; 21:1057-70. [PMID: 27502207 DOI: 10.1007/s10495-016-1279-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroyoshi Matsumura
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
9
|
Silva BSE, Fagundes NCF, Nogueira BCL, Valladares J, Normando D, Lima RR. Epithelial rests of Malassez: from latent cells to active participation in orthodontic movement. Dental Press J Orthod 2017; 22:119-125. [PMID: 28746495 PMCID: PMC5525453 DOI: 10.1590/2177-6709.22.3.119-125.sar] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction: The epithelial rests of Malassez (ERM) represent a group of cells in the periodontal ligament classically consisting of latent or quiescent structures associated with pathological processes. However, recent evidence shows that these structures cannot be considered only as cellular debris. The ERM is a major tissue structure, with functions in maintaining the homeostasis of periodontal tissue, including the maintenance of orthodontic movement. Objective: The present literature review aims at presenting the potential functions of ERM, with emphasis on orthodontic movement and the functional structure of the periodontium. Conclusion: ERM cells have a functional activity in modulation of orthodontic movement, trough their potential for differentiation, maintenance functions and the capacity of repairing periodontium.
Collapse
Affiliation(s)
- Bianca Silva E Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Universidade Federal do Pará (Belém/PA, Brasil)
| | | | - Bárbara Catarina Lima Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Universidade Federal do Pará (Belém/PA, Brasil)
| | - José Valladares
- School of Dentistry, Universidade Federal de Goiás (Goiânia/GO, Brasil)
| | - David Normando
- School of Dentistry, Universidade Federal de Pará (Belém/PA, Brasil)
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Universidade Federal do Pará (Belém/PA, Brasil)
| |
Collapse
|
10
|
Nishio C, Rompré P, Moldovan F. Effect of exogenous retinoic acid on tooth movement and periodontium healing following tooth extraction in a rat model. Orthod Craniofac Res 2017. [PMID: 28643913 DOI: 10.1111/ocr.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the effect of isotretinoin on orthodontic tooth movement (OTM) and wound healing following exodontia. SETTING AND SAMPLE POPULATION Sixteen 40-day-old male Wistar rats were divided into two groups: (a) OTM and (b) tooth extraction (TE) of the upper 1st molar and OTM. The experimental animals were treated with isotretinoin (7.5 mg/kg) and the control animals with oil solution for 37 days. MATERIALS AND METHODS The OTM and bone volume were evaluated by the micro-CT and the periodontium healing was assessed by immunohistochemistry for VEGF-C, COX-2 and IL-1ß. RESULTS The animals of both groups submitted to the TE showed a statistically significant decrease in the bone volume percentage and increase in OTM. No significant difference of OTM and bone volume was observed between the control and experimental group. However, the alveolar bone of the isotretinoin group revealed more medullary spaces with inflammatory, hematopoietic cells, blood vessels and intense immunolabeling for VEGF-C. This group also showed faster gingival regeneration. No significant difference was observed in the COX-2 and IL-1ß labelings following TE between both groups. CONCLUSION The isotretinoin did not affect the OTM nor did it cause an alteration in maxillary bone volume. This exogenous acid may contribute to the acceleration of gingival healing.
Collapse
Affiliation(s)
- C Nishio
- Department of Oral Health, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - P Rompré
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - F Moldovan
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
12
|
Helal M, Abd-Elmotelb M, Sarhan N, Nagy N. Putative role of epithelial rests of Malassez in alleviation of traumatic occlusion. TANTA DENTAL JOURNAL 2015; 12:292-301. [DOI: 10.1016/j.tdj.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Lee HK, Choung HW, Yang YI, Yoon HJ, Park IA, Park JC. ODAM inhibits RhoA-dependent invasion in breast cancer. Cell Biochem Funct 2015; 33:451-61. [PMID: 26358398 DOI: 10.1002/cbf.3132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022]
Abstract
Odontogenic ameloblast-associated protein (ODAM) contributes to cell adhesion. In human cancer, ODAM is down-regulated, and the overexpression of ODAM results in a favourable prognosis; however, the molecular mechanisms underlying ODAM-mediated inhibition of cancer invasion and metastasis remain unclear. Here, we identify a critical role for ODAM in inducing cancer cell adhesion. ODAM induced RhoA activity and the expression of downstream factors, including Rho-associated kinase (ROCK). ODAM-mediated RhoA signalling resulted in actin filament rearrangement by activating PTEN and inhibiting the phosphorylation of AKT. When ODAM is overexpressed in MCF7 breast cancer cells and AGS gastric cancer cells that activate RhoA at high levels, it decreases motility, increases adhesion and inhibits the metastasis of MCF7 cells. Conversely, depletion of ODAM in cancer cells inhibits Rho GTPase activation, resulting in increased cancer migration and invasion. These results suggest that ODAM expression in cells maintains their adhesion, resulting in the prevention of their metastasis via the regulation of RhoA signalling in breast cancer cells. SIGNIFICANCE Breast cancer represents the first most frequent cancer, and the ratio of mortality is high in women. Of utmost importance for reducing risk by breast cancer are their anti-invasion mechanisms, particularly in the non-invasive cancer cells because metastasis is the principal cause of death among cancer patients. ODAM induced RhoA activity. ODAM-mediated RhoA signalling resulted in actin filament rearrangement, increased cell adhesion and inhibited the migration/invasion of MCF7 cells. These results suggest that ODAM expression maintains their adhesion, resulting in the prevention of their metastasis via the regulation of RhoA signalling in breast cancer cells.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Han-Wool Choung
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Young-Il Yang
- Paik Institute Clinical Research, Inje University, Busan, Republic of Korea
| | - Hye-Jung Yoon
- Department of Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In Ae Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Aida N, Ushikubo T, Kobayashi F, Sako R, Suehara M, Furusawa M, Muramatsu T. Actin stabilization induces apoptosis in cultured porcine epithelial cell rests of Malassez. Int Endod J 2015; 49:663-9. [PMID: 26118334 DOI: 10.1111/iej.12494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
Abstract
AIM To test whether actin stabilization by jasplakinolide induces inhibition of cell viability and apoptosis in epithelial cell rests of Malassez (ERM). METHODOLOGY ERM derived from porcine were spread in a 96-well dish (5 × 10(4) /well) using Dulbecco's modified Eagle's medium. The actin-specific stabilization reagent, jasplakinolide, was incorporated into the culture medium and incubated for 24 h. To evaluate cell viability, the WST-1 assay was carried out and absorption (450 nm) was measured. To detect apoptotic cells, monoclonal antibody to single-strand DNA (ssDNA) was used and absorption (405 nm) was measured. Actin stabilization and apoptosis induced by jasplakinolide were morphologically investigated by staining with Alexa Fluor 568 phalloidin and observed under a fluorescent microscope. As a negative control, DMSO was used instead of jasplakinolide. Differences between the jasplakinolide-treated group and the control group were analysed statistically using the Student's t-test. RESULTS Cell viability decreased in a concentration-dependent manner, and cell viability in the jasplakinolide-treated ERM was lower than that in nontreated ERM (n = 16, P < 0.01). Apoptotic cells in the jasplakinolide-treated ERM were more frequently detected compared to that in nontreated ERM (n = 16, P < 0.01). Morphologically, shrinkage, irregular forms and fragmentation of nuclei suggesting apoptotic bodies were observed in jasplakinolide-treated ERM, whilst actin filaments were extended in non-treated ERM. CONCLUSION Actin stabilization by jasplakinolide inhibited cell viability and induced apoptosis in epithelial cell rests of Malassez.
Collapse
Affiliation(s)
- N Aida
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - T Ushikubo
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - F Kobayashi
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - R Sako
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - M Suehara
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - M Furusawa
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| | - T Muramatsu
- Department of Endodontics and Clinical Cariology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
15
|
Lee HK, Ji S, Park SJ, Choung HW, Choi Y, Lee HJ, Park SY, Park JC. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling. J Biol Chem 2015; 290:14740-53. [PMID: 25911094 PMCID: PMC4505539 DOI: 10.1074/jbc.m115.648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 12/25/2022] Open
Abstract
Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- From the Departments of Oral Histology/Developmental Biology and
| | - Suk Ji
- the Department of Periodontology, Anam Hospital, Korea University, 73 Inchonro, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea, and
| | - Su-Jin Park
- From the Departments of Oral Histology/Developmental Biology and
| | - Han-Wool Choung
- From the Departments of Oral Histology/Developmental Biology and
| | - Youngnim Choi
- Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehagro, Chongro-gu, Seoul 110-744, Korea
| | - Hyo-Jung Lee
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Shin-Young Park
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Joo-Cheol Park
- From the Departments of Oral Histology/Developmental Biology and
| |
Collapse
|
16
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
17
|
Ganss B, Abbarin N. Maturation and beyond: proteins in the developmental continuum from enamel epithelium to junctional epithelium. Front Physiol 2014; 5:371. [PMID: 25309457 PMCID: PMC4174742 DOI: 10.3389/fphys.2014.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
Enamel, covering the surface of teeth, is the hardest substance in mammals. It is designed to last a lifetime in spite of severe environmental challenges. Enamel is formed in a biomineralization process that is essentially divided into secretory and maturation stages. While the molecular events of enamel formation during the secretory stage have been elucidated to some extent, the mechanisms of enamel maturation are less defined, and little is known about the molecules present beyond the maturation stage. Several genes, all located within the secreted calcium-binding phosphoprotein (SCPP) gene cluster, were recently shown to be expressed during the developmental continuum from maturation stage ameloblasts to junctional epithelium (JE). This review introduces four such genes and their protein products, and presents our current state of knowledge on their roles, primarily in enamel formation and JE biology. The discovery of these proteins, and a more detailed analysis of their biological functions, will likely contribute to a more thorough understanding of the molecular mechanisms of enamel maturation and dentogingival attachment.
Collapse
Affiliation(s)
- Bernhard Ganss
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Nastaran Abbarin
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
18
|
Nishio C, Wazen R, Moffatt P, Nanci A. Expression of odontogenic ameloblast-associated and amelotin proteins in the junctional epithelium. Periodontol 2000 2013; 63:59-66. [DOI: 10.1111/prd.12031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 12/23/2022]
|
19
|
Foster JS, Fish LM, Phipps JE, Bruker CT, Lewis JM, Bell JL, Solomon A, Kestler DP. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling. BMC Cancer 2013; 13:227. [PMID: 23648148 PMCID: PMC3651709 DOI: 10.1186/1471-2407-13-227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/25/2013] [Indexed: 12/17/2022] Open
Abstract
Background The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. Methods The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. Results ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. Conclusions The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior.
Collapse
Affiliation(s)
- James S Foster
- Department of Medicine, Human Immunology and Cancer Program, University of Tennessee Health Sciences Center-Knoxville, Knoxville, TN 37920, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Keinan D, Cohen RE. The Significance of Epithelial Rests of Malassez in the Periodontal Ligament. J Endod 2013; 39:582-7. [DOI: 10.1016/j.joen.2013.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
|
21
|
Takahashi K, Shimonishi M, Wang R, Watanabe H, Kikuchi M. Epithelial-mesenchymal interactions induce enamel matrix proteins and proteases in the epithelial cells of the rests of Malassez in vitro. Eur J Oral Sci 2012; 120:475-83. [DOI: 10.1111/j.1600-0722.2012.01002.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Ken Takahashi
- Division of Comprehensive Dentistry; Tohoku University Graduate School of Dentistry; Sendai; Japan
| | - Mitsuru Shimonishi
- Division of Comprehensive Dentistry; Tohoku University Graduate School of Dentistry; Sendai; Japan
| | - Rui Wang
- Division of Comprehensive Dentistry; Tohoku University Graduate School of Dentistry; Sendai; Japan
| | - Hiroatsu Watanabe
- Division of Comprehensive Dentistry; Tohoku University Graduate School of Dentistry; Sendai; Japan
| | - Masahiko Kikuchi
- Division of Comprehensive Dentistry; Tohoku University Graduate School of Dentistry; Sendai; Japan
| |
Collapse
|
22
|
Bolaños A, Hotton D, Ferbus D, Loiodice S, Berdal A, Babajko S. Regulation of calbindin-D(28k) expression by Msx2 in the dental epithelium. J Histochem Cytochem 2012; 60:603-10. [PMID: 22614360 DOI: 10.1369/0022155412450641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amelogenesis involves the coordinated expression of a set of molecules that includes enamel matrix proteins and calcium-binding proteins. Msx2 is a member of the divergent homeobox gene family and is instrumental in dental morphogenesis and biomineralization. This study focused on an EF-hand calcium-binding protein, calbindin-D(28k), which is highly expressed in dental epithelium. In vivo data showed that calbindin-D(28k) levels were higher in ameloblasts from Msx2(+/-) mice than Msx2(+/+) mice. Consistent with this finding, calbindin-D(28k) distribution was affected in transgenic mice with ectopic expression in root epithelium in rests of Malassez in Msx2(+/-) and more clearly in Msx2(-/-) mice. In accordance with these in vivo data, calbindin-D(28k) protein and mRNA levels were decreased in LS8 ameloblast-like cells by exogenous Msx2 overexpression. Furthermore, calbindin-D(28k) promoter activity (nt-1075/+34) was specifically diminished in the presence of Msx2 overexpression, showing that Msx2 behave as a transcriptional repressor for calbindin-D(28k) gene expression. In conclusion, Msx2 may control the spatiotemporally restricted frame of calbindin-D(28k) production in the dental epithelium in relation to enamel mineralization, as previously shown for amelogenin.
Collapse
Affiliation(s)
- Alba Bolaños
- Centre de Recherche des Cordeliers, INSERM UMRS 872, Team 5, Laboratory of Molecular Oral Physiopathology, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Kimura A, Yoshizawa K, Sasaki T, Uehara N, Kinoshita Y, Miki H, Yuri T, Uchida T, Tsubura A. N-methyl-N-nitrosourea-induced changes in epithelial rests of Malassez and the development of odontomas in rats. Exp Ther Med 2012; 4:15-20. [PMID: 23060916 DOI: 10.3892/etm.2012.559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/04/2012] [Indexed: 01/13/2023] Open
Abstract
Morphological changes in the epithelial rests of Malassez (ERM) and the development of odontogenic tumors in the molars of female Lewis rats treated at 4 weeks of age with a single intraperitoneal injection of 50 mg/kg of N-methyl-N-nitrosourea (MNU) were examined at 12, 18 and 30 weeks of age. Following MNU exposure, the total number and average area of ERM in the cervical and furcational regions of the first, second and third molars of the mandible and maxilla were compared with age-matched control animals. The number of ERM at each time point was significantly greater in the MNU-treated group compared to the control group, but there was no time-dependent increase in the number of ERM in either group. The area of ERM was significantly larger in the MNU-treated group compared to the control group at each time point, and it increased in a time-dependent manner in the MNU-treated group. No increases in the number or area of ERM were observed in the control group. At 30 weeks of age, 23% of the MNU-treated rats had developed odontomas (complex type) in the molar region as well as in the incisor region. Immunohistochemically, the expression of tyrosine receptor kinase A (TrkA) and cytokeratin 14 (CK14) decreased, whereas p63 expression remained high during ERM enlargement. In tumors, ameloblast-like cells were positive for amelogenin, TrkA and CK14 but negative for p63, whereas odontoblast-like cells were negative for all antigens examined. In conclusion, a single intraperitoneal injection of MNU caused the development of odontomas in the molar region; these tumors were possibly derived from ERM.
Collapse
Affiliation(s)
- Ayako Kimura
- Department of Pathology II, Kansai Medical University, Morguchi, Osaka 570-8506
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee HK, Park SJ, Oh HJ, Kim JW, Bae HS, Park JC. Expression pattern, subcellular localization, and functional implications of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer cells. Gene Expr Patterns 2012; 12:102-8. [DOI: 10.1016/j.gep.2012.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/01/2012] [Accepted: 02/19/2012] [Indexed: 10/28/2022]
|
25
|
Kestler DP, Foster JS, Bruker CT, Prenshaw JW, Kennel SJ, Wall JS, Weiss DT, Solomon A. ODAM Expression Inhibits Human Breast Cancer Tumorigenesis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:73-85. [PMID: 21603257 PMCID: PMC3091406 DOI: 10.4137/bcbcr.s6859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have posited that Odontogenic Ameloblast Associated Protein (ODAM) serves as a novel prognostic biomarker in breast cancer and now have investigated its potential role in regulating tumor growth and metastasis. Human breast cancer MDA-MB-231 cells were transfected with a recombinant ODAM plasmid construct (or, as a control, the plasmid vector alone). ODAM expression increased adhesion and apoptosis of the transfected MDA-MB-231 cells and suppressed their growth rate, migratory activity, and capability to invade extracellular matrix-coated membranes. Implantation of such cells into mouse mammary fat pads resulted in significantly smaller tumors than occurred in animals that received control cells; furthermore, ODAM-expressing cells, when injected intravenously into mice, failed to metastasize, whereas the control-transfected counterparts produced extensive lung lesions. Our finding that induction of ODAM expression in human breast cancer cells markedly inhibited their neoplastic properties provides further evidence for the regulatory role of this molecule in tumorigenesis and, consequently, is of potential clinical import.
Collapse
|