1
|
Hsiao HY, Nien CY, Hong HH, Cheng MH, Yen TH. Application of dental stem cells in three-dimensional tissue regeneration. World J Stem Cells 2021; 13:1610-1624. [PMID: 34909114 PMCID: PMC8641025 DOI: 10.4252/wjsc.v13.i11.1610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Zhongli, Taoyuan 320, Taiwan
| | - Hsiang-Hsi Hong
- Department of Periodontics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
2
|
Lui H, Vaquette C, Denbeigh JM, Bindra R, Kakar S, van Wijnen AJ. Multiphasic scaffold for scapholunate interosseous ligament reconstruction: A study in the rabbit knee. J Orthop Res 2021; 39:1811-1824. [PMID: 32579261 PMCID: PMC7758190 DOI: 10.1002/jor.24785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Scapholunate interosseous ligament tears are a common wrist injury in young and active patients that can lead to suboptimal outcomes after repair. This research aims to assess a multiphasic scaffold using 3D-printing for reconstruction of the dorsal scapholunate interosseous ligament. The scaffold was surgically implanted in vivo in the position of the native rabbit medial collateral ligament. Two branches of treatment were implemented in the study. In the first group, the rabbits (n = 8) had the knee joint fixed in flexion for 4 weeks using 1.4 mm K-wires prior to sample harvesting. The second group (n = 8) had the rabbit knee joint immobilized for 4 weeks prior to K-wire removal and mobilization for an additional 4 weeks prior to sample harvesting. Overall, samples were harvested at 4 weeks post-surgery (immobilized group) and eight weeks post-surgery (mobilized group). Mechanical tensile testing (n = 5/group) and histology (n = 3/group) of the constructs were conducted. Tissue integration and maturation were observed resulting in increased mechanical strength of the operated joint at 8 weeks (P < .05). Bone and ligament tissues were regenerated in their respective compartments with structural and mechanical properties approaching those reported for the human dorsal SLIL ligament. Clinical Significance: This proof of concept study has demonstrated that the synthetic multiphasic scaffold was capable of regenerating both bone and ligament while also withstanding the physiological load once implanted in the rabbit knee. The artificial scaffold may provide an alternative to current techniques for reconstruction of scapholunate instability or other ligament injuries in the hand and wrist.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Janet M. Denbeigh
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America
| | - Randip Bindra
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia,Gold Coast University Hospital, Department of Orthopaedic Surgery, Gold Coast, Queensland, Australia
| | - Sanjeev Kakar
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| | - Andre J. van Wijnen
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
3
|
Yang T, Li Y, Hong Y, Chi L, Liu C, Lan Y, Wang Q, Yu Y, Xu Q, Teng W. The Construction of Biomimetic Cementum Through a Combination of Bioskiving and Fluorine-Containing Biomineralization. Front Bioeng Biotechnol 2020; 8:341. [PMID: 32391345 PMCID: PMC7193115 DOI: 10.3389/fbioe.2020.00341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous attention is given to the construction of biomimetic cementum for regeneration of tooth cementum, the lack of recapitulating the composition and hierarchical structure of cementum often leads to the poor performance of constructed materials. How to highly mimic the sophisticated composition and hierarchy of cementum remains a longstanding challenge in constructing the biomimetic cementum. Inspired by cementum formation process, a novel construction approach via a combination of bioskiving and fluorine-containing biomineralization is developed in this study. The alternative collagen lamellae (ACL) that can highly mimic the rotated plywood structure of cementum collagen matrix is fabricated via bioskiving. Followed by biomineralization in the amorphous calcium phosphate (ACP) solution with different concentration of fluorine, a series of biomimetic cementum is constructed. Screened by physicochemical characterization, the biomimetic cementum with the composition and hierarchical structure highly similar to human cementum is selected. Through in vitro biological assay, this biomimetic cementum is proven to significantly promote the adhesion, proliferation, and cementogenic differentiation of periodontal ligament cells (PDLCs). Furthermore, in vivo study demonstrates that biomimetic cementum could induce cementogenesis. This biomimetic cementum constructed via combinatory application of bioskiving and fluorine-containing biomineralization stands as a promising candidate for achieving cementum regeneration.
Collapse
Affiliation(s)
- Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yubing Hong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu Lan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital, Shenzhen University, Health Science Center, Shenzhen, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang C, Zhou X, Chen Y, Zhang J, Chen W, Svensson P, Wang K. Somatosensory profiling of patients with plaque-induced gingivitis: a case–control study. Clin Oral Investig 2019; 24:875-882. [DOI: 10.1007/s00784-019-02963-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
|
5
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
6
|
Carvalho EDS, Rosa RH, Pereira FDM, Anbinder AL, Mello I, Habitante SM, Raldi DP. Effects of diode laser irradiation and fibroblast growth factor on periodontal healing of replanted teeth after extended extra-oral dry time. Dent Traumatol 2016; 33:91-99. [PMID: 27748036 DOI: 10.1111/edt.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 12/23/2022]
Abstract
AIM The search for effective protocols to reduce the incidence of root resorption and allow periodontal ligament repair is still challenging, given the unpredictable outcome of late tooth replantation. The aim of this study was to assess the effects of both high-power diode laser irradiation (DL) and basic fibroblast growth factor (FGF) on the periodontal healing of replanted teeth after extended extra-oral dry time. METHODS Maxillary incisors of 50 male rats were extracted and assigned to three experimental and two control groups (n = 10). DL: root surfaces treated with DL (810 nm, continuous mode, 1.0 W, 30 s), FGF: topical application of FGF gel to the root surface and in the alveolar wound, DL + FGF: DL and topical application of FGF gel, C+: no treatment after extraction and immediate replantation and C-: no treatment after extraction and replantation after 60 min. In the experimental groups, the specimens were kept dry for 60 min, the pulps were removed and the canals were filled with calcium hydroxide paste prior to tooth replantation. The animals were euthanized after 60 days. The specimens were processed for radiographic, histological and immunohistochemical analyses. RESULTS The radiographic analysis showed fewer resorptive areas in DL + FGF (P < 0.05). The histological and immunohistochemical analyses showed that the DL group had lower mean values of ankylosis, replacement and inflammatory resorption when compared to C-, not differing statistically from C+. DL + FGF produced significantly more collagen fibers (type I and type III) than C-, not differing from C+ in the case of type I fibers (P < 0.05). CONCLUSIONS DL, with or without FGF, reduced the occurrence of external root resorption and ankylosis. Periodontal healing was favored and some fiber reinsertion occurred only when FGF was used.
Collapse
Affiliation(s)
- Erica Dos Santos Carvalho
- Division of Endodontics, Department of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rogério Hadid Rosa
- Department of Dentistry, University of Taubate, Taubate, Sao Paulo, Brazil
| | | | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of Sao Jose dos Campos, Universidade Estadual Paulista, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Isabel Mello
- Division of Endodontics, Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
7
|
McConnell JC, O'Connell OV, Brennan K, Weiping L, Howe M, Joseph L, Knight D, O'Cualain R, Lim Y, Leek A, Waddington R, Rogan J, Astley SM, Gandhi A, Kirwan CC, Sherratt MJ, Streuli CH. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res 2016; 18:5. [PMID: 26747277 PMCID: PMC4706673 DOI: 10.1186/s13058-015-0664-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS Mammographic density was assessed in 22 post-menopausal women (aged 54-66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson's trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.
Collapse
Affiliation(s)
- James C McConnell
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Oliver V O'Connell
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Lisa Weiping
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Miles Howe
- University Hospital of South Manchester, Manchester, UK.
| | - Leena Joseph
- University Hospital of South Manchester, Manchester, UK.
| | - David Knight
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Ronan O'Cualain
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK. ronan.o'
| | - Yit Lim
- University Hospital of South Manchester, Manchester, UK.
| | - Angela Leek
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Rachael Waddington
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Jane Rogan
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Susan M Astley
- Centre for Imaging Sciences, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Ashu Gandhi
- University Hospital of South Manchester, Manchester, UK.
| | - Cliona C Kirwan
- Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, University of Manchester, Manchester, UK.
| | - Michael J Sherratt
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Cruz ACC, Caon T, Menin Á, Granato R, Aragonês Á, Boabaid F, Simões CMO. Adipose-Derived Stem Cells Decrease Bone Morphogenetic Protein Type 2-Induced Inflammation In Vivo. J Oral Maxillofac Surg 2015; 74:505-14. [PMID: 26433041 DOI: 10.1016/j.joms.2015.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 09/07/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE Recombinant human bone morphogenetic protein type 2 (rhBMP-2) has been used to promote bone regeneration. In contrast, some reports have suggested rhBMP-2 does not provide advantages over autogenous bone grafting owing to the undesirable postoperative symptoms of this growth factor. Because the undesirable symptoms of rhBMP-2 are usually promoted by inflammation, this study evaluated the in vivo effect of human adipose-derived stem cells (ASCs) incorporated into polylactic co-glycolic acid (PLGA) scaffolds in decreasing the inflammatory response induced by a low dose of rhBMP-2. MATERIALS AND METHODS PLGA scaffolds were characterized and loaded with rhBMP-2 1, 2.5, or 5 μg per scaffold (n = 6) and the in vitro released protein amounts were quantified at 7 hours and 1, 7, and 21 days after loading (n = 3). The muscle tissue of 6 beagles received the following treatments: PLGA, PLGA plus rhBMP-2 (2.5 μg), and PLGA plus rhBMP-2 plus ASCs (1 × 10(6) ASCs). The samples were evaluated 45 days after surgery. Statistical analyses were performed and the P value was set at .05. RESULTS PLGA plus rhBMP-2 plus ASCs yielded the smallest number of inflammatory foci (P < .001) and giant cells (P < .001) and the largest number of angiogenesis sites (P < .001). CONCLUSIONS Human ASCs administered in vivo into PLGA scaffolds with a low dose of rhBMP-2 decrease tissue inflammation and increase angiogenesis in muscular sites.
Collapse
Affiliation(s)
- Ariadne Cristiane Cabral Cruz
- Postdoctoral Research Fellow, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Thiago Caon
- Postdoctoral Research Fellow, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Álvaro Menin
- Professor, Department of Environment and Health, University of Planalto Catarinense, Lages, Brazil
| | - Rodrigo Granato
- Professor, Department of Dentistry, Unigranrio University, Rio de Janeiro, Brazil
| | - Águedo Aragonês
- Research, Department of Research, Institute of Applied Biotechnologies, Florianópolis, Brazil
| | - Fernanda Boabaid
- Professor, Avantis Department of Dentistry, University, Balneário Camboriu, Brazil
| | | |
Collapse
|
9
|
Lee JS, Kim HS, Park SY, Kim TW, Jung JS, Lee JB, Kim CS. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells onto Decellularized Dental Root Surfaces. Cell Transplant 2015; 24:1767-79. [DOI: 10.3727/096368914x684628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.
Collapse
Affiliation(s)
- Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyun-Suk Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - So-Yon Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Tae-Wan Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jae-Suk Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jong-Bin Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Chang-Sung Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Jung IH, Lee SH, Jun CM, Oh N, Yun JH. Characterization of the enhanced bone regenerative capacity of human periodontal ligament stem cells engineered to express the gene encoding bone morphogenetic protein 2. Tissue Eng Part A 2014; 20:2189-99. [PMID: 24494708 DOI: 10.1089/ten.tea.2013.0648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are considered an appropriate cell source for therapeutic strategies. The aims of this study were to investigate the sustainability of bone morphogenetic protein 2 (BMP2) secretion and the bone regenerative capacity of hPDLSCs that had been genetically modified to express the gene encoding BMP2 (BMP2). hPDLSCs isolated from healthy third molars were transduced using replication-deficient recombinant adenovirus (rAd) encoding BMP2 (hPDLSCs/rAd-BMP2), and the cellular characteristics and osteogenic potentials of hPDLSCs/rAd-BMP2 were analyzed both in vitro and in vivo. hPDLSCs/rAd-BMP2 successfully secreted BMP2, formed colonies, and expressed immunophenotypes similar to their nontransduced counterparts. As to their osteogenic potential, hPDLSCs/rAd-BMP2 formed greater mineralized nodules and exhibited significantly higher levels of expression of BMP2 and the gene encoding alkaline phosphatase, and formed more and better quality bone than other hPDLSC-containing or recombinant human BMP2-treated groups, being localized at the initial site until 8 weeks. The findings of the present study demonstrate that hPDLSCs/rAd-BMP2 effectively promote osteogenesis not only in vitro but also in vivo. The findings also suggest that hPDLSCs can efficiently carry and deliver BMP2, and that hPDLSCs/rAd-BMP2 could be used in an attractive novel therapeutic approach for the regeneration of deteriorated bony defects.
Collapse
Affiliation(s)
- Im-Hee Jung
- Department of Dentistry, School of Medicine, Inha University , Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|