1
|
Cui X, Zhao X, Wang Y, Yang Y, Zhang H. Glucagon‑like peptide‑1 analogue exendin‑4 modulates serotonin transporter expression in intestinal epithelial cells. Mol Med Rep 2020; 21:1934-1940. [PMID: 32319618 PMCID: PMC7057813 DOI: 10.3892/mmr.2020.10976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Serotonin-selective reuptake transporter (SERT) regulates extracellular availability of serotonin (5-hydroxytryptamine; 5-HT) and participates in the pathogenesis of functional disorders. Colonic SERT expression is decreased in colonic sensitized rats, and the glucagon-like peptide-1 analogue, exendin-4, reduces visceral hypersensitivity by decreasing 5-HT levels and increasing SERT expression. The present in vitro study aimed to further investigate the effects of exendin-4 on SERT expression, and to examine the role of GLP-1 and its receptor in the regulation of 5-HT. SERT mRNA and protein expression levels were detected by reverse transcription-quantitative PCR and western blotting. A [3H]−5-HT reuptake experiment was performed in IEC-6 rat intestinal epithelial cells treated with exendin-4. Effects on the adenosine cyclophosphate (AC)/PKA pathway were examined by variously treating cells with the AC activator forskolin, the protein kinase A (PKA) inhibitor H89 and the AC inhibitor SQ22536. Exendin-4 treatment upregulated SERT expression and enhanced 5-HT reuptake in IEC-6 cells. Also, PKA activity in IEC-6 cells was increased by both exendin-4 and forskolin, whereas these effects were abolished by the pre-treatment of exendin-9, which is a GLP-1R inhibitor, SQ22536 and H89. In conclusion, exendin-4 may be associated with the upregulation of SERT expression via the AC/PKA signaling pathway.
Collapse
Affiliation(s)
- Xiufang Cui
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaojing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Wang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Yang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
2
|
Xie S, Fan W, He H, Huang F. Role of Melatonin in the Regulation of Pain. J Pain Res 2020; 13:331-343. [PMID: 32104055 PMCID: PMC7012243 DOI: 10.2147/jpr.s228577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a pleiotropic hormone synthesized and secreted mainly by the pineal gland in vertebrates. Melatonin is an endogenous regulator of circadian and seasonal rhythms. Melatonin is involved in many physiological and pathophysiological processes demonstrating antioxidant, antineoplastic, anti-inflammatory, and immunomodulatory properties. Accumulating evidence has revealed that melatonin plays an important role in pain modulation through multiple mechanisms. In this review, we examine recent evidence for melatonin on pain regulation in various animal models and patients with pain syndromes, and the potential cellular mechanisms.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C. Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1β. J Pineal Res 2019; 67:e12598. [PMID: 31349378 DOI: 10.1111/jpi.12598] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/24/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Melatonin is the main secretory product of the pineal gland, and it is involved in the regulation of periodic events. A melatonin production independent of the photoperiod is typical of the gut. However, the local physiological role of melatonin at the intestinal tract is poorly characterized. In this study, we evaluated the anti-inflammatory activities of melatonin in an in vitro model of inflamed intestinal epithelium. To this purpose, we assessed different parameters usually associated with intestinal inflammation using IL-1β-stimulated Caco-2 cells. Differentiated monolayers of Caco-2 cells were preincubated with melatonin (1 nmol/L-50 μmol/L) and then exposed to IL-1β. After each treatment, different inflammatory mediators, DNA-breakage, and global DNA methylation status were assayed. To evaluate the involvement of melatonin membrane receptors, we also exposed differentiated monolayers to melatonin in the presence of luzindole, a MT1 and MT2 antagonist. Our results showed that melatonin, at concentrations similar to those obtained in the lumen gut after ingestion of dietary supplements for the treatment of sleep disorders, was able to attenuate the inflammatory response induced by IL-1β. Anti-inflammatory effects were expressed as both a decrease of the levels of inflammatory mediators, including IL-6, IL-8, COX-2, and NO, and a reduced increase in paracellular permeability. Moreover, the protection was associated with a reduced NF-κB activation and a prevention of DNA demethylation. Conversely, luzindole did not reverse the melatonin inhibition of stimulated-IL-6 release. In conclusion, our findings suggest that melatonin, through a local action, can modulate inflammatory processes at the intestinal level, offering new opportunities for a multimodal management of IBD.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Abstract
OBJECTIVE The pathophysiology of irritable bowel syndrome (IBS) is not completely understood, although we do know that patients with IBS have a high prevalence of psychiatric comorbidity (mainly depression and anxiety disorders). Melatonin, produced in the gastrointestinal tract, influences gut motility. Psychiatric conditions are associated with circadian disturbances in peripheral melatonin levels. This study aimed to investigate associations between daytime salivary melatonin and gastrointestinal symptoms in young adult psychiatric patients. METHODS Ninety-six patients (86% women), aged 18-25 years (M (SD) = 21 (2)), seeking psychiatric care with primarily anxiety disorders, affective disorders, or both were included in the study. Total scores from the Gastrointestinal Symptoms Rating Scale - IBS were compared with salivary melatonin measured at three time points (30 minutes after waking up, at 11:00 hours and 30 minutes after lunch) during the waking hours of 1 day. RESULTS After adjustment for potential confounders, melatonin levels in saliva 30 minutes after lunch remained significantly correlated to the total Gastrointestinal Symptoms Rating Scale - IBS score after correction for multiple testing (B = 0.016, SE = 0.006, p = .015, q = 0.045). In a post hoc analysis, symptoms of gastrointestinal pain and bloating contributed most to this association. CONCLUSIONS In young adult psychiatric patients, salivary melatonin levels after lunch are associated with gastrointestinal symptoms, which is consistent with the proposed effect of elevated levels of gastrointestinal melatonin on gut motility. This result suggests a link between IBS symptoms and regulation of melatonin in patients with psychiatric disorders.
Collapse
|
5
|
Dothel G, Barbaro MR, Raschi E, Barbara G, De Ponti F. Advancements in drug development for diarrhea-predominant irritable bowel syndrome. Expert Opin Investig Drugs 2018; 27:251-263. [PMID: 29451407 DOI: 10.1080/13543784.2018.1442434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common disorder characterized by a complex pathophysiology hampering optimal targeted drug development. Recent advances in our understanding of key underlying mechanisms prompted novel therapeutics including novel pharmacological approaches. AREAS COVERED This review summarizes the latest advancements in the pipeline of IBS-D drugs focusing on new pharmacological targets, efficacy and safety of medicinal products considering the recent harmonization of regulatory requirements by the FDA and the EMA. EXPERT OPINION The new 5-HT3 receptor antagonist ramosetron appears a promising therapeutic approach devoid of significant adverse events, although it is presently unavailable in Western countries, most likely because of the precautionary approach taken by regulatory agencies with this drug class. New pharmacological concepts on full agonists/antagonists, mixed-receptor activity and novel drug targets may streamline the present drug pipeline along with the adherence on new regulatory guidelines on outcome measures. Eluxadoline can be taken as an example of this paradigm shift. It has now been granted marketing authorization for IBS-D on both sides of the Atlantic, but it is still considered as a second-line agent by the NICE. There is still much work to be done to fully cover clinical needs of patients with IBS-D.
Collapse
Affiliation(s)
- Giovanni Dothel
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | | | - Emanuel Raschi
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Giovanni Barbara
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Fabrizio De Ponti
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
6
|
Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 2017; 175:3209-3219. [PMID: 28967098 DOI: 10.1111/bph.14058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin, the primary indoleamine hormone of the mammalian pineal gland, is known to have a plethora of neuroregulatory, neuroprotective and other properties. Melatonergic signalling is mediated by its two GPCRs, MT1 and MT2 , which are widely expressed in the mammalian CNS. Melatonin levels and receptor expression often show a decrease during normal ageing, and this reduction may be accelerated in some disease states. Depleted melatonergic signalling has been associated with neuropsychiatric dysfunction and impairments in cognition, memory, neurogenesis and neurorestorative processes. The anticonvulsant and mood stabilizer, valproic acid (VPA), up-regulates melatonin MT1 and/or MT2 receptor expression in cultured cells and in the rat brain. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. Interestingly, other HDAC inhibitors, such as trichostatin A, which are structurally distinct from VPA, can also up-regulate melatonin receptor expression, unlike a VPA analogue, valpromide, which lacks HDAC inhibitory activity. Moreover, VPA increases histone H3 acetylation along the length of the MT1 gene promoter in rat C6 cells. These findings indicate that an epigenetic mechanism, linked to histone hyperacetylation/chromatin remodelling and associated changes in gene transcription, is involved in the up-regulation of melatonin receptors by VPA. Epigenetic induction of MT1 and/or MT2 receptor expression, in areas where these receptors are lost because of ageing, injury or disease, may be a promising therapeutic avenue for the management of CNS dysfunction and other disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Sarra G Bahna
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Esteban-Zubero E, López-Pingarrón L, Alatorre-Jiménez MA, Ochoa-Moneo P, Buisac-Ramón C, Rivas-Jiménez M, Castán-Ruiz S, Antoñanzas-Lombarte Á, Tan DX, García JJ, Reiter RJ. Melatonin's role as a co-adjuvant treatment in colonic diseases: A review. Life Sci 2017; 170:72-81. [PMID: 27919824 DOI: 10.1016/j.lfs.2016.11.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Melatonin is produced in the pineal gland as well as many other organs, including the enterochromaffin cells of the digestive mucosa. Melatonin is a powerful antioxidant that resists oxidative stress due to its capacity to directly scavenge reactive species, to modulate the antioxidant defense system by increasing the activities of antioxidant enzymes, and to stimulate the innate immune response through its direct and indirect actions. In addition, the dysregulation of the circadian system is observed to be related with alterations in colonic motility and cell disruptions due to the modifications of clock genes expression. In the gastrointestinal tract, the activities of melatonin are mediated by melatonin receptors (MT2), serotonin (5-HT), and cholecystokinin B (CCK2) receptors and via receptor-independent processes. The levels of melatonin in the gastrointestinal tract exceed by 10-100 times the blood concentrations. Also, there is an estimated 400 times more melatonin in the gut than in the pineal gland. Gut melatonin secretion is suggested to be influenced by the food intake. Low dose melatonin treatment accelerates intestinal transit time whereas high doses may decrease gut motility. Melatonin has been studied as a co-adjuvant treatment in several gastrointestinal diseases including irritable bowel syndrome (IBS), constipation-predominant IBS (IBS-C), diarrhea-predominant IBS (IBS-D), Crohn's disease, ulcerative colitis, and necrotizing enterocolitis. The purpose of this review is to provide information regarding the potential benefits of melatonin as a co-adjuvant treatment in gastrointestinal diseases, especially IBS, Crohn's disease, ulcerative colitis, and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain.
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Purificación Ochoa-Moneo
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Celia Buisac-Ramón
- Primary Care Unit, Sector Zaragoza III, Avenida San Juan Bosco 5, 50009 Zaragoza, Spain
| | - Miguel Rivas-Jiménez
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Silvia Castán-Ruiz
- Primary Care Unit, Sector Zaragoza III, Avenida San Juan Bosco 5, 50009 Zaragoza, Spain
| | - Ángel Antoñanzas-Lombarte
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Camilleri M. Physiological underpinnings of irritable bowel syndrome: neurohormonal mechanisms. J Physiol 2014; 592:2967-80. [PMID: 24665101 DOI: 10.1113/jphysiol.2014.270892] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is a vast neuroendocrine organ with extensive extrinsic and intrinsic neural circuits that interact to control its function. Circulating and paracrine hormones (amine and peptide) provide further control of secretory, absorptive, barrier, motor and sensory mechanisms that are essential to the digestion and assimilation of nutrients, and the transport and excretion of waste products. Specialized elements of the mucosa (including enteroendocrine cells, enterocytes and immune cells) and the microbiome interact with other intraluminal contents derived from the diet, and with endogenous chemicals that alter the gut's functions. The totality of these control mechanisms is often summarized as the brain-gut axis. In irritable bowel syndrome (IBS), which is the most common gastrointestinal disorder, there may be disturbances at one or more of these diverse control mechanisms. Patients present with abdominal pain in association with altered bowel function. This review documents advances in understanding the pathophysiological mechanisms in the brain-gut axis in patients with IBS. It is anticipated that identification of one or more disordered functions in clinical practice will usher in a renaissance in the management of IBS, leading to effective therapy tailored to the needs of the individual patient.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
9
|
Latorre E, Mendoza C, Matheus N, Castro M, Grasa L, Mesonero JE, Alcalde AI. IL-10 modulates serotonin transporter activity and molecular expression in intestinal epithelial cells. Cytokine 2013; 61:778-84. [PMID: 23410504 DOI: 10.1016/j.cyto.2013.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/16/2012] [Accepted: 01/13/2013] [Indexed: 12/29/2022]
Abstract
Serotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory processes and also contributes to intestinal mucosa homeostasis. The regulation of SERT by pro-inflammatory factors is well known; however, the effect of IL-10 on the intestinal serotoninergic system mediated by SERT remains unknown. Therefore, the aim of the present study is to determine whether IL-10 affects SERT activity and expression in enterocyte-like Caco-2 cells. Treatment with IL-10 was assessed and SERT activity was determined by 5-HT uptake. SERT mRNA and protein expression was analyzed using quantitative RT-PCR and western blotting. The results showed that IL-10 induced a dual effect on SERT after 6h of treatment. On one hand, IL-10, at a low concentration, inhibited SERT activity, and this effect might be explained by a non-competitive inhibition of SERT. On the other hand, IL-10, at a high concentration, increased SERT activity and molecular expression in the membrane of the cells. This effect was mediated by the IL-10 receptor and triggered by the PI3K intracellular pathway. Our results demonstrate that IL-10 modulates SERT activity and expression, depending on its extracellular conditions. This study may contribute to understand serotoninergic responses in intestinal pathophysiology.
Collapse
Affiliation(s)
- Eva Latorre
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This review summarizes the metabolism, secretion, regulation and sites of action of melatonin. An updated description of the melatonin receptors, including their signal transduction mechanisms, distribution and characterization of receptor genes, is given. Special emphasis is focused on the clinical aspects and potential uses of melatonin in the sleep-wake rhythms, in the immune function, in cancer therapy, in neuroprotection against oxidative damage and antioxidant activities in different tissues. Finally, combined effects of melatonin with other drugs are discussed.
Collapse
|
11
|
Chen CQ, Fichna J, Bashashati M, Li YY, Storr M. Distribution, function and physiological role of melatonin in the lower gut. World J Gastroenterol 2011; 17:3888-98. [PMID: 22025877 PMCID: PMC3198018 DOI: 10.3748/wjg.v17.i34.3888] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/18/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a hormone with endocrine, paracrine and autocrine actions. It is involved in the regulation of multiple functions, including the control of the gastrointestinal (GI) system under physiological and pathophysiological conditions. Since the gut contains at least 400 times more melatonin than the pineal gland, a review of the functional importance of melatonin in the gut seems useful, especially in the context of recent clinical trials. Melatonin exerts its physiological effects through specific membrane receptors, named melatonin-1 receptor (MT1), MT2 and MT3. These receptors can be found in the gut and their involvement in the regulation of GI motility, inflammation and pain has been reported in numerous basic and clinical studies. Stable levels of melatonin in the lower gut that are unchanged following a pinealectomy suggest local synthesis and, furthermore, implicate physiological importance of endogenous melatonin in the GI tract. Presently, only a small number of human studies report possible beneficial and also possible harmful effects of melatonin in case reports and clinical trials. These human studies include patients with lower GI diseases, especially patients with irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. In this review, we summarize the presently available information on melatonin effects in the lower gut and discuss available in vitro and in vivo data. We furthermore aim to evaluate whether melatonin may be useful in future treatment of symptoms or diseases involving the lower gut.
Collapse
|