1
|
Schaeffer MR, Guenette JA, Jensen D. Impact of ageing and pregnancy on the minute ventilation/carbon dioxide production response to exercise. Eur Respir Rev 2021; 30:30/161/200225. [PMID: 34289982 PMCID: PMC9488679 DOI: 10.1183/16000617.0225-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022] Open
Abstract
Ventilatory efficiency can be evaluated using the relationship between minute ventilation (V′E) and the rate of CO2 production (V′CO2). In accordance with the modified alveolar ventilation equation, this relationship is determined by changes in dead space volume (VD) and/or the arterial CO2 tension (PaCO2) equilibrium point. In this review, we summarise the physiological factors that may account for normative ageing and pregnancy induced increases in V′E/V′CO2 during exercise. Evidence suggests that age-related increases in VD and pregnancy-related decreases in the PaCO2 equilibrium point are mechanistically linked to the increased V′E/V′CO2 during exercise. Importantly, the resultant increase in V′E/V′CO2 (ratio or slope), with normal ageing or pregnancy, remains below the critical threshold for prognostic indication in cardiopulmonary disease, is not associated with increased risk of adverse health outcomes, and does not affect the respiratory system's ability to fulfil its primary role of eliminating CO2 and maintaining arterial oxygen saturation during exercise. The minute ventilation/carbon dioxide production response to exercise is elevated with advancing age and in healthy pregnancy due to increased dead space and lowering of the arterial partial pressure of carbon dioxide equilibrium point, respectively.https://bit.ly/2GJXm0o
Collapse
Affiliation(s)
- Michele R Schaeffer
- Centre for Heart Lung Innovation, Providence Health Care Research Institute, The University of British Columbia, St. Paul's Hospital, Vancouver, Canada.,Dept of Physical Therapy, The University of British Columbia, Vancouver, Canada
| | - Jordan A Guenette
- Centre for Heart Lung Innovation, Providence Health Care Research Institute, The University of British Columbia, St. Paul's Hospital, Vancouver, Canada .,Dept of Physical Therapy, The University of British Columbia, Vancouver, Canada.,School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - Dennis Jensen
- Dept of Kinesiology and Physical Education, McGill University, Montréal, Canada.,Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Montréal, Canada.,Research Centre for Physical Activity and Health, Faculty of Education, McGill University, Montréal, Canada
| |
Collapse
|
2
|
Molgat-Seon Y, Dominelli PB, Ramsook AH, Schaeffer MR, Molgat Sereacki S, Foster GE, Romer LM, Road JD, Guenette JA, Sheel AW. The effects of age and sex on mechanical ventilatory constraint and dyspnea during exercise in healthy humans. J Appl Physiol (1985) 2017; 124:1092-1106. [PMID: 29357513 DOI: 10.1152/japplphysiol.00608.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examined the effects of age, sex, and their interaction on mechanical ventilatory constraint and dyspnea during exercise in 22 older (age = 68 ± 1 yr; n = 12 women) and 22 younger (age = 25 ± 1 y, n = 11 women) subjects. During submaximal exercise, older subjects had higher end-inspiratory (EILV) and end-expiratory (EELV) lung volumes than younger subjects (both P < 0.05). During maximal exercise, older subjects had similar EILV ( P > 0.05) but higher EELV than younger subjects ( P < 0.05). No sex differences in EILV or EELV were observed. We noted that women had a higher work of breathing (Wb) for a given minute ventilation (V̇e) ≥65 l/min than men ( P < 0.05) and older subjects had a higher Wb for a given V̇e ≥60 l/min ( P < 0.05). No sex or age differences in Wb were present at any submaximal relative V̇e. At absolute exercise intensities, older women experienced expiratory flow limitation (EFL) more frequently than older men ( P < 0.05), and older subjects were more likely to experience EFL than younger subjects ( P < 0.05). At relative exercise intensities, women and older individuals experienced EFL more frequently than men and younger individuals, respectively (both P < 0.05). There were significant effects of age, sex, and their interaction on dyspnea intensity during exercise at absolute, but not relative, intensities (all P < 0.05). Across subjects, dyspnea at 80 W was significantly correlated with indexes of mechanical ventilatory constraint (all P < 0.05). Collectively, our findings suggest age and sex have significant impacts on Wb, operating lung volumes, EFL, and dyspnea during exercise. Moreover, it appears that mechanical ventilatory constraint may partially explain sex differences in exertional dyspnea in older individuals. NEW & NOTEWORTHY We found that age and sex have a significant effect on mechanical ventilatory constraint and the perception of dyspnea during exercise. We also observed that the perception of exertional dyspnea is associated with indexes of mechanical ventilatory constraint. Collectively, our results suggest that the combined influences of age and biological sex on mechanical ventilatory constraint during exercise contributes, in part, to the increased perception of dyspnea during exercise in older women.
Collapse
Affiliation(s)
- Yannick Molgat-Seon
- School of Kinesiology, University of British Columbia , Vancouver , Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital , Vancouver , Canada
| | - Paolo B Dominelli
- School of Kinesiology, University of British Columbia , Vancouver , Canada
| | - Andrew H Ramsook
- Centre for Heart and Lung Innovation, St. Paul's Hospital , Vancouver , Canada
| | - Michele R Schaeffer
- Centre for Heart and Lung Innovation, St. Paul's Hospital , Vancouver , Canada
| | - Stéfan Molgat Sereacki
- Division of Family Medicine, Faculty of Medicine, University of British Columbia , Vancouver , Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Lee M Romer
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London , Uxbridge , United Kingdom
| | - Jeremy D Road
- Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia , Vancouver , Canada
| | - Jordan A Guenette
- Centre for Heart and Lung Innovation, St. Paul's Hospital , Vancouver , Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia , Vancouver , Canada
| |
Collapse
|
3
|
Gagnon P, Guenette JA, Langer D, Laviolette L, Mainguy V, Maltais F, Ribeiro F, Saey D. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014; 9:187-201. [PMID: 24600216 PMCID: PMC3933347 DOI: 10.2147/copd.s38934] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during progression of the disease.
Collapse
Affiliation(s)
- Philippe Gagnon
- Faculté de Médecine, Université Laval, Québec, QC, Canada ; Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jordan A Guenette
- Centre for Heart Lung Innovation, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada ; Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Langer
- Department of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Louis Laviolette
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | | | - François Maltais
- Faculté de Médecine, Université Laval, Québec, QC, Canada ; Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Fernanda Ribeiro
- Faculté de Médecine, Université Laval, Québec, QC, Canada ; Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Didier Saey
- Faculté de Médecine, Université Laval, Québec, QC, Canada ; Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|