1
|
Perinelli DR, Cambriani A, Cespi M, Tombesi A, Pecchielan L, Sabbatini B, Bonacucina G, Palmieri GF. Exploring the Functional Properties of Hydrolyzed Keratin: Filling the Knowledge Gap on Surface Active, Emulsifying, and Thickening Properties. ACS OMEGA 2025; 10:12224-12232. [PMID: 40191379 PMCID: PMC11966282 DOI: 10.1021/acsomega.4c10755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
Hydrolyzed keratin (HK) refers to any hydrolysate of keratin of a different origin derived by acid, alkali, enzymatic, or other methods of hydrolysis. HK is water soluble and has distinct chemical-physical properties compared to fibrous keratin. Although HK is employed across various technological sectors, there is a notable gap in the literature regarding the detailed chemical-physical properties of commercially available HKs. This study aims to address this gap by providing a thorough analysis of the surface-active, emulsifying, and thickening properties of three commercially available HKs. The results reveal relevant differences among HKs marketed under the International Nomenclature Cosmetic Ingredient (INCI) name "Hydrolyzed Keratin," with variations in their chemical-physical properties, primarily influenced by molecular weight. Specifically, HKs with a higher average M w (>3000 Da) and protein content demonstrate enhanced emulsifying and thickening capabilities. Conversely, HKs with low M w (<1000 Da) do not show surface-active properties suitable for the preparation of emulsions. Therefore, this study underscores the need for the standardization of commercially available HK products to obtain biomaterials with tailored and specific chemical-physical properties, enhancing their potential applications in cosmetic and pharmaceutical topical formulations.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandra Cambriani
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Marco Cespi
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessia Tombesi
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Linda Pecchielan
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Beatrice Sabbatini
- Department
of Biomolecular Sciences, School of Pharmacy, Via Ca’ le Suore 2/4, Urbino (PU) 61029, Italy
| | - Giulia Bonacucina
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Giovanni Filippo Palmieri
- Chemistry
Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| |
Collapse
|
2
|
Altay Benetti A, Tarbox T, Benetti C. Current Insights into the Formulation and Delivery of Therapeutic and Cosmeceutical Agents for Aging Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
“Successful aging” counters the traditional idea of aging as a disease and is increasingly equated with minimizing age signs on the skin, face, and body. From this stems the interest in preventative aesthetic dermatology that might help with the healthy aging of skin, help treat or prevent certain cutaneous disorders, such as skin cancer, and help delay skin aging by combining local and systemic methods of therapy, instrumental devices, and invasive procedures. This review will discuss the main mechanisms of skin aging and the potential mechanisms of action for commercial products already on the market, highlighting the issues related to the permeation of the skin from different classes of compounds, the site of action, and the techniques employed to overcome aging. The purpose is to give an overall perspective on the main challenges in formulation development, especially nanoparticle formulations, which aims to defeat or slow down skin aging, and to highlight new market segments, such as matrikines and matrikine-like peptides. In conclusion, by applying enabling technologies such as those delivery systems outlined here, existing agents can be repurposed or fine-tuned, and traditional but unproven treatments can be optimized for efficacious dosing and safety.
Collapse
|
3
|
Chukwunonso Ossai I, Shahul Hamid F, Hassan A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:81-104. [PMID: 35933837 DOI: 10.1016/j.wasman.2022.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The valorisation of keratinous wastes involves biorefining and recovering the bioresource materials from the keratinous wastes to produce value-added keratin-based bioproducts with a broad application, distribution, and marketability potential. Valorisation of keratinous wastes increases the value of the wastes and enables more sustainable waste management towards a circular bioeconomy. The abundance of keratinous wastes as feedstock from agro-industrial processing, wool processing, and grooming industry benefits biorefinery and extraction of keratins, which could be the optimal solution for developing an ecologically and economically sustainable keratin-based economy. The transition from the current traditional linear models that are deleterious to the environment, which end energy and resources recovery through disposal by incineration and landfilling, to a more sustainable and closed-loop recycling and recovery approach that minimises pollution, disposal challenges, loss of valuable bioresources and potential revenues are required. The paper provides an overview of keratinous wastes and the compositional keratin proteins with the descriptions of the various keratin extraction methods in biorefinery and functional material synthesis, including enzymatic and microbial hydrolysis, chemical hydrolysis (acid/alkaline hydrolysis, dissolution in ionic liquids, oxidative and sulphitolysis) and chemical-free hydrolysis (steam explosion and ultrasonic). The study describes various uses and applications of keratinases and keratin-based composites fabricated through various manufacturing processes such as lyophilisation, compression moulding, solvent casting, hydrogel fabrication, sponge formation, electrospinning, and 3D printing for value-added applications.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Auwalu Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science, Federal University Kashere, Gombe State, Nigeria
| |
Collapse
|
4
|
Nuutinen EM, Valle-Delgado JJ, Kellock M, Farooq M, Österberg M. Affinity of Keratin Peptides for Cellulose and Lignin: A Fundamental Study toward Advanced Bio-Based Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9917-9927. [PMID: 35930798 PMCID: PMC9387096 DOI: 10.1021/acs.langmuir.2c01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Keratin is a potential raw material to meet the growing demand for bio-based materials with special properties. Keratin can be obtained from feathers, a by-product from the poultry industry. One approach for keratin valorization is to use the protein to improve the properties of already existing cellulose and lignin-based materials to meet the requirements for replacing fossil-based plastics. To ensure a successful combination of keratin with lignocellulosic building blocks, keratin must have an affinity to these substrates. Hence, we used quartz crystal microbalance with a dissipation monitoring (QCM-D) technique to get a detailed understanding of the adsorption of keratin peptides onto lignocellulosic substrates and how the morphology of the substrate, pH, ionic strength, and keratin properties affected the adsorption. Keratin was fractionated from feathers with a scalable and environmentally friendly deep eutectic solvent process. The keratin fraction used in the adsorption studies consisted of different sized keratin peptides (about 1-4 kDa), which had adopted a random coil conformation as observed by circular dichroism (CD). Measuring keratin adsorption to different lignocellulosic substrates by QCM-D revealed a significant affinity of keratin peptides for lignin, both as smooth films and in the form of nanoparticles but only a weak interaction between cellulose and keratin. Systematic evaluation of the effect of surface, media, and protein properties enabled us to obtain a deeper understanding of the driving force for adsorption. Both the structure and size of the keratin peptides appeared to play an important role in its adsorption. The keratin-lignin combination is an attractive option for advanced material applications. For improved adsorption on cellulose, modifications of either keratin or cellulose would be required.
Collapse
Affiliation(s)
- Emmi-Maria Nuutinen
- Sustainable
products and materials, VTT, Technical Research
Centre of Finland, Tietotie 2, FI-02044 Espoo, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Juan José Valle-Delgado
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Miriam Kellock
- Sustainable
products and materials, VTT, Technical Research
Centre of Finland, Tietotie 2, FI-02044 Espoo, Finland
| | - Muhammad Farooq
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Monika Österberg
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
5
|
Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
6
|
Park KC, Kim SY, Khan G, Park ES. Ultrasonographic Assessment of the Cutaneous Changes Induced by Topical Use of Novel Peptides Comprising Laminin 5. Arch Plast Surg 2022; 49:304-309. [PMID: 35832163 PMCID: PMC9142241 DOI: 10.1055/s-0042-1748642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background
Laminin 5, which is found in the basement membrane of dermal-epidermal junction (DEJ), is a major adhesive component and associated with proliferating and migrating keratinocytes. In this study, we hypothesized that the topical application of the skin care products containing the novel peptides might restore the DEJ structure by deriving deposition of laminin 5 and promoting the keratinocyte migration. Here, we evaluated the restoration of DEJ by measuring the skin thickness.
Methods
Single-center retrospective analysis was performed on a total of 13 patients who underwent skin care using Baume L.C.E. (France, Laboratories d' Anjou) between January and March 2021. All patients applied the skin care agent for 2 weeks only on their left hand dorsum. Before the initiation of the application and after 2 weeks, both their hands were evaluated on photography and ultrasound. And the patients were asked to rate their satisfaction with the questionnaire after 2 weeks.
Results
There was no obvious improvement in photographic assessment and questionnaire. The post–pre difference of skin thickness in ultrasound images was, in left hand, 0.1 ± 0.37 in distal point and 0.1 ± 0.35 in proximal point; and, in right hand, 0 ± 0.17 in distal point and 0 ± 0.15 in proximal point, respectively. The pre–post difference was statistically significant in proximal point (
p
= 0.035).
Conclusion
Topical application of novel peptide derivative comprising laminin 5 demonstrated cutaneous changes including skin thickness, as assessed by ultrasound. Further studies using other modalities including dermal density measurement, three-dimensional photography, optical coherence tomography, or skin biopsy would be helpful to determine the skin-improving effects.
Collapse
Affiliation(s)
- Kyong Chan Park
- Department of Plastic and Reconstructive Surgery and College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Se Young Kim
- Department of Plastic and Reconstructive Surgery and College of Medicine, Soonchunhyang University, Gumi, Korea
| | - Galina Khan
- Department of Plastic and Reconstructive Surgery and College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Eun Soo Park
- Department of Plastic and Reconstructive Surgery and College of Medicine, Soonchunhyang University, Bucheon, Korea
| |
Collapse
|
7
|
Dias MFRG, Loures AF, Ekelem C. Hair Cosmetics for the Hair Loss Patient. Indian J Plast Surg 2021; 54:507-513. [PMID: 34984093 PMCID: PMC8719955 DOI: 10.1055/s-0041-1739241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Medical professionals that treat patients with alopecia usually lack knowledge about hair cosmetics. Trichologists focus on hair cycling and growth problems and not on the hair shaft integrity. This may lead to abandon of the use of the prescribed treatment, such as topical minoxidil or to inadequate traumatic grooming habits that may jeopardize hair follicle health. Shampoos, hair dyes, and hair-straightening products may alter hair fiber structure, remove lipids, and elude protein. Hair procedures such as hair dying and straightening have side effects and health concerns, especially for pregnant women or sensitive hair and scalp patients. Hair breakage, follicle traction, frizz, contact dermatitis, and mutagenicity are possible side effects of hair cosmetics misuse. The proper use of hair care products may help to increase patients' adherence to alopecia treatments and avoid health problems related to inadequate application of hair cosmetics and procedures.
Collapse
Affiliation(s)
| | | | - Chloe Ekelem
- Department of Dermatology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers (Basel) 2021; 13:1896. [PMID: 34200460 PMCID: PMC8201023 DOI: 10.3390/polym13111896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the agro-industry's side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Florin Oancea
- Bioresource Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| |
Collapse
|
9
|
Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, Begum SS, Narasaiah B. Extraction and application of keratin from natural resources: a review. 3 Biotech 2021; 11:220. [PMID: 33968565 DOI: 10.1007/s13205-021-02734-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Nadiah Binti Mohd Saffe
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Kuantan Malaysia
| | - Mohd Azmir Bin Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Arun Gupta
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Mohamed Yacin Sikkandar
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, 11952 Saudi Arabia
| | - S Sabarunisha Begum
- Department of Chemical Engineering, Sethu Institute of Technology, Kariapatti, 626115 Tamil Nadu India
| | - Boya Narasaiah
- Department of Physics, Indian Institute of Technology, Tirupati, 517506 Andhra Pradesh India
| |
Collapse
|
10
|
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front Microbiol 2020; 11:580164. [PMID: 33391200 PMCID: PMC7775373 DOI: 10.3389/fmicb.2020.580164] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The search for novel renewable products over synthetics hallmarked this decade and those of the recent past. Most economies that are prospecting on biodiversity for improved bio-economy favor renewable resources over synthetics for the potential opportunity they hold. However, this field is still nascent as the bulk of the available resources are non-renewable based. Microbial metabolites, emphasis on secondary metabolites, are viable alternatives; nonetheless, vast microbial resources remain under-exploited; thus, the need for a continuum in the search for new products or bio-modifying existing products for novel functions through an efficient approach. Environmental distress syndrome has been identified as a factor that influences the emergence of genetic diversity in prokaryotes. Still, the process of how the change comes about is poorly understood. The emergence of new traits may present a high prospect for the industrially viable organism. Microbial enzymes have prominence in the bio-economic space, and proteases account for about sixty percent of all enzyme market. Microbial keratinases are versatile proteases which are continuously gaining momentum in biotechnology owing to their effective bio-conversion of recalcitrant keratin-rich wastes and sustainable implementation of cleaner production. Keratinase-assisted biodegradation of keratinous materials has revitalized the prospects for the utilization of cost-effective agro-industrial wastes, as readily available substrates, for the production of high-value products including amino acids and bioactive peptides. This review presented an overview of keratin structural complexity, the potential mechanism of keratin biodegradation, and the environmental impact of keratinous wastes. Equally, it discussed microbial keratinase; vis-à-vis sources, production, and functional properties with considerable emphasis on the ecological implication of microbial producers and catalytic tendency improvement strategies. Keratinase applications and prospective high-end use, including animal hide processing, detergent formulation, cosmetics, livestock feed, and organic fertilizer production, were also articulated.
Collapse
Affiliation(s)
- Nonso E. Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
de Souza FDR, Benvenuti J, Meyer M, Wulf H, Klüver E, Gutterres M. Extraction of keratin from unhairing of bovine hide. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1842740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Franck da Rosa de Souza
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline Benvenuti
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Meyer
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Hauke Wulf
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Enno Klüver
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Mariliz Gutterres
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Kshetri P, Roy SS, Chanu SB, Singh TS, Tamreihao K, Sharma SK, Ansari MA, Prakash N. Valorization of chicken feather waste into bioactive keratin hydrolysate by a newly purified keratinase from Bacillus sp. RCM-SSR-102. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111195. [PMID: 32771848 DOI: 10.1016/j.jenvman.2020.111195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study is the characterization of a keratinase from Bacillus sp.RCM-SSR-102 and its application in the preparation of keratin hydrolysate from chicken feather waste. The purified KER102 keratinase was characterized as a serine-metallo protease having a molecular weight of 30 kDa with optimum pH and temperature of 10 and 50 °C respectively. The keratinase could retain 98% activity at pH 10 and above and 55% activity at 20% salt concentration. The KER102 keratinase was found to be stable in the presence of oxidizing agents, surfactants and organic solvents. The keratinase could also hydrolyze both soluble and insoluble complex protein substrates. The KER102 keratinase could hydrolyze up to 5% (w/v) feather releasing 1.7 ± 0.19 mg/mL soluble peptides. The feather keratin hydrolysate (FKH) had both antioxidant and antityrosinase activity. The IC50 value of FKH in 2, 2-diphenyl 1-picrylhydrazyl (DPPH) radical scavenging activity (1.02 ± 0.01 mg/mL), 2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity (20 ± +00.04 μg/mL) and anti-tyrosinase activity (1.2 ± 0.22 mg/mL) was recorded. The FKH also had DNA protecting ability against oxidative damage. Antioxidant and anti-tyrosinase compounds have potential applications in the pharmaceutical and cosmeceutical industry. Hence, the purified keratinase can be a potential candidate for the production of antioxidant and antityrosinase compounds from chicken feather waste.
Collapse
Affiliation(s)
- Pintubala Kshetri
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Subhra Saikat Roy
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India.
| | | | - Thangjam Surchandra Singh
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - K Tamreihao
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Susheel Kumar Sharma
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Meraj Alam Ansari
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Narendra Prakash
- ICAR-NEH Quality Analysis Laboratory, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| |
Collapse
|
13
|
Cellular Response of Neutrophils to Bismuth Subnitrate and Micronized Keratin Products In Vitro. Vet Sci 2020; 7:vetsci7030087. [PMID: 32640682 PMCID: PMC7559488 DOI: 10.3390/vetsci7030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to assess the effect of bismuth subnitrate and micronized keratin on bovine neutrophils in vitro. We hypothesized that recruitment and activation of neutrophils into the teat canal and sinus are the mechanisms of action of bismuth subnitrate and keratin-based teat sealant formulations. To test this, a chemotaxis assay (Experiment 1) and a myeloperoxidase (MPO) assay (Experiment 2) were conducted in vitro. Blood was sampled from 12 mid-lactation dairy cows of variable ages. Neutrophils were extracted and diluted to obtain cell suspensions of approximately 106 cells/mL. In Experiment 1, test substances were placed in a 96-well plate, separated from the cell suspension by a 3 µm pore membrane and incubated for 3 h to allow neutrophils to migrate through the membrane. In Experiment 2, neutrophils were exposed to the test products and the amount of MPO released was measured by optical density. Results showed that neutrophils were not activated by bismuth or keratin products (p < 0.05) in all of the tests performed. These results suggest that the mechanisms of action of bismuth subnitrate and keratin-based teat sealants do not rely on neutrophil recruitment and activation in the teat canal and sinus after treatment.
Collapse
|
14
|
Zhang C, Xia L, Zhang J, Liu X, Xu W. Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Callegaro K, Brandelli A, Daroit DJ. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:399-415. [PMID: 31351626 DOI: 10.1016/j.wasman.2019.06.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
The livestock production and subsequent processing of meat results in huge quantities of solid waste such as viscera, bones, skin and keratin-rich materials, including feathers, hair, wool, claws and hooves. In particular, the continuous growth of poultry industry generates massive amounts of feathers as major waste material. The conversion of such by-products into materials with increased value has been studied. Hydrothermal, chemical or biological approaches have been investigated to achive effective conversion of highly recalcitrant proteins that are abundant in animal waste, but increasing interest is devoted to the development of biotechnological methods. The processing of feathers and other by-products into protein hydrolysates may have industrial and commercial significance. Therefore, this review comprehensively addresses the postulated applications of hydrolysates obtained from keratinous biomasses. Examples on the utilization of feather hydrolysates as organic soil fertilizers, feed ingredients, cosmetic formulations and biofuel production are described in the literature. Microbial feather hydrolysis can generate bioactive peptides as well. The use of protein-rich waste from meat industry to produce hydrolysates with biological activities constitutes a point of utmost interest for development of functional ingredients with elevated value.
Collapse
Affiliation(s)
- Kelly Callegaro
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo, Av. Jacob Reinaldo Haupenthal 1580, 97900-000 Cerro Largo, RS, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo, Av. Jacob Reinaldo Haupenthal 1580, 97900-000 Cerro Largo, RS, Brazil.
| |
Collapse
|
16
|
Apone F, Barbulova A, Colucci MG. Plant and Microalgae Derived Peptides Are Advantageously Employed as Bioactive Compounds in Cosmetics. FRONTIERS IN PLANT SCIENCE 2019; 10:756. [PMID: 31244874 PMCID: PMC6581726 DOI: 10.3389/fpls.2019.00756] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 05/02/2023]
Abstract
Bioactive peptides (BP) are specific protein fragments that are physiologically important for most living organisms. It is proven that in humans they are involved in a wide range of therapeutic activities as antihypertensive, antioxidant, anti-tumoral, anti-proliferative, hypocholesterolemic, and anti-inflammatory. In plants, BP are involved in the defense response, as well as in the cellular signaling and the development regulation. Most of the peptides used as ingredients in health-promoting foods, dietary supplements, pharmaceutical, and cosmeceutical preparations are obtained by chemical synthesis or by partial digestion of animal proteins. This makes them not fully accepted by the consumers because of the risks associated with solvent contamination or the use of animal derived substances. On the other hand, plant and microalgae derived peptides are known to be selective, effective, safe, and well tolerated once consumed, thus they have got a great potential for use in functional foods, drugs, and cosmetic products. In fact, the interest in the plant and microalgae derived BP is rapidly increasing and in this review, we highlight and discuss the current knowledge about their studies and applications in the cosmetic field.
Collapse
Affiliation(s)
- Fabio Apone
- Arterra Bioscience srl, Naples, Italy
- Vitalab srl, Naples, Italy
| | - Ani Barbulova
- Arterra Bioscience srl, Naples, Italy
- *Correspondence: Ani Barbulova,
| | | |
Collapse
|
17
|
|
18
|
Oladele IO, Olajide JL, Daramola OO, Siaw KB. Re-Evaluation of Bovine Fiber Biomass as Exploitable Keratinous Bio-Resource for Biomedical and Industrial Applications. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jmmce.2017.51001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Pan F, Lu Z, Tucker I, Hosking S, Petkov J, Lu JR. Surface active complexes formed between keratin polypeptides and ionic surfactants. J Colloid Interface Sci 2016; 484:125-134. [PMID: 27599381 DOI: 10.1016/j.jcis.2016.08.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022]
Abstract
Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.
Collapse
Affiliation(s)
- Fang Pan
- Biological Physics Group, Schuster Building, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Zhiming Lu
- Biological Physics Group, Schuster Building, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Ian Tucker
- Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Sarah Hosking
- Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Jordan Petkov
- Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK; Menara KLK 1, Jalan Pju 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor 47800, Malaysia
| | - Jian R Lu
- Biological Physics Group, Schuster Building, Oxford Road, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
20
|
Ferraro V, Anton M, Santé-Lhoutellier V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hashmi F, Nester C, Wright C, Newton V, Lam S. Characterising the biophysical properties of normal and hyperkeratotic foot skin. J Foot Ankle Res 2015; 8:35. [PMID: 26269720 PMCID: PMC4533794 DOI: 10.1186/s13047-015-0092-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. METHODS Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. RESULTS Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. CONCLUSIONS This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Farina Hashmi
- School of Health Sciences, Centre for Health Sciences Research, University of Salford, Manchester, UK
| | - Christopher Nester
- Foot and Ankle Research Programme, Centre for Health Sciences Research, School of Health Sciences, University of Salford, Manchester, UK
| | - Ciaran Wright
- School of Health Sciences, Centre for Health Sciences Research, University of Salford, Manchester, UK
| | - Veronica Newton
- School of Health Sciences, University of Salford, Manchester, UK
| | - Sharon Lam
- Reckitt Benckiser, Dansom Lane, Hull, UK
| |
Collapse
|
22
|
Hashmi F, Wright C, Nester C, Lam S. The reliability of non-invasive biophysical outcome measures for evaluating normal and hyperkeratotic foot skin. J Foot Ankle Res 2015; 8:28. [PMID: 26161147 PMCID: PMC4496920 DOI: 10.1186/s13047-015-0083-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hyperkeratosis of foot skin is a common skin problem affecting people of different ages. The clinical presentation of this condition can range from dry flaky skin, which can lead to fissures, to hard callused skin which is often painful and debilitating. The purpose of this study was to test the reliability of certain non-invasive skin measurement devices on foot skin in normal and hyperkeratotic states, with a view to confirming their use as quantitative outcome measures in future clinical trials. Methods Twelve healthy adult participants with a range of foot skin conditions (xerotic skin, heel fissures and plantar calluses) were recruited to the study. Measurements of normal and hyperkeratotic skin sites were taken using the following devices: Corneometer® CM 825, Cutometer® 580 MPA, Reviscometer® RVM 600, Visioline® VL 650 Quantiride® and Visioscan® VC 98, by two investigators on two consecutive days. The intra and inter rater reliability and standard error of measurement for each device was calculated. Results The data revealed the majority of the devices to be reliable measurement tools for normal and hyperkeratotic foot skin (ICC values > 0.6). The surface evaluation parameters for skin: SEsc and SEsm have greater reliability compared to the SEr measure. The Cutometer® is sensitive to soft tissue movement within the probe, therefore measurement of plantar soft tissue areas should be approached with caution. Reviscometer® measures on callused skin demonstrated an unusually high degree of error. Conclusions These results confirm the intra and inter rater reliability of the Corneometer®, Cutometer®, Visioline® and Visioscan® in quantifying specific foot skin biophysical properties.
Collapse
Affiliation(s)
- Farina Hashmi
- School of Health Sciences, Centre for Health Sciences Research, University of Salford, Manchester, UK
| | - Ciaran Wright
- Postgraduate student, School of Health Sciences, Centre for Health Sciences Research, University of Salford, Manchester, UK
| | - Christopher Nester
- Research lead: Foot and Ankle Research Programme, Centre for Health Sciences Research, School of Health Sciences, University of Salford, Manchester, UK
| | - Sharon Lam
- Senior Innovation Associate, Reckitt Benckiser, Dansom Lane, Hull, UK
| |
Collapse
|
23
|
Velasco MVR, Vieira RP, Fernandes AR, Dario MF, Pinto CASO, Pedriali CA, Kaneko TM, Baby AR. Short-term clinical of peel-off facial mask moisturizers. Int J Cosmet Sci 2014; 36:355-60. [PMID: 24750029 DOI: 10.1111/ics.12133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/29/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to compare the efficacy of a peel-off facial mask based on polyvinyl alcohol (PVA) with an oil-in-water (o/w) emulsion and the effect of a soybean extract fermented by Bifidobacterium animale incorporated in those formulations (5% w/w). METHODS The formulations were submitted to randomized clinical studies in volunteers to evaluate the measurement effects as (a) tensor by Cutometer® , (b) moisturizing by Corneometer® and transepidermal water loss (TEWL) by Tewameter® . These effects were determined in a short-term study (3 h) in a controlled-temperature room. RESULTS The tensor effect and TEWL values indicated no significant difference between the use of facial mask and emulsion. On the other hand, the moisturizing effect of the facial mask on the stratum corneum was more significant than that of the emulsion according to Corneometer® measurements. Biometric cutaneous evaluation of peel-off facial masks (short-term study) showed that the masks promoted moisturizing effect of the stratum corneum more effectively than the oil-in-water emulsions. Thus, the facial masks were more efficient than emulsions in relation to moisturizing effects, but this efficiency is not related to the presence of fermented soybean extract. CONCLUSION The results indicated that peel-off facial masks increase skin hydration in a process related to the occlusive effect.
Collapse
Affiliation(s)
- M V R Velasco
- Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Avenue, Bl-13/15, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li J, Li Y, Zhang Y, Liu X, Zhao Z, Zhang J, Han Y, Zhou D. Toxicity study of isolated polypeptide from wool hydrolysate. Food Chem Toxicol 2013; 57:338-45. [PMID: 23597444 DOI: 10.1016/j.fct.2013.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of wool polypeptide has been evaluated by both cell and animal models. Wool was dissolved in sodium hydroxide solution, the pH value of the solution was adjusted to 5.55 and the precipitate was harvested as wool polypeptide. The spray-dried polypeptide was collected as powders and characterized by SEM, FTIR and TG-DSC. The cell culturing results showed that wool polypeptide had no obvious negative effect on cell viability in vitro. Both acute oral toxicity and subacute 30-day oral toxicology studies showed that wool polypeptide had no influence on body weight, feed consumption, blood chemistry, and hematology at any dose levels. There were no treatment related findings on gross or detailed necroscopy, organ weights, organ/body weight ratios and histology. Our study indicated the absence of toxicity in wool polypeptide and supported its safe use as a food ingredient or drug carrier.
Collapse
Affiliation(s)
- Jiashen Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Villa ALV, Aragão MRS, Dos Santos EP, Mazotto AM, Zingali RB, de Souza EP, Vermelho AB. Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber. BMC Biotechnol 2013; 13:15. [PMID: 23414102 PMCID: PMC3621039 DOI: 10.1186/1472-6750-13-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. Results Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano–membranes (Millipore – YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers. Scanning Electron Microscopy showed deposits of organic matter in the junction of the cuticles that probably collaborates to the sealing of the cuticles, increasing the brightness and softness. Conclusions These results show that the enzymatic method to produce keratin peptides for hair care products is an attractive and eco- friendly method with a great potential in the cosmetic industry.
Collapse
Affiliation(s)
- Ana Lúcia Vazquez Villa
- Department of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Simionato AVC, Carrilho E, Tavares MFM. Characterization of protein hydrolysates of cosmetic use by CE-MS. J Sep Sci 2011; 34:947-56. [PMID: 21374808 DOI: 10.1002/jssc.201000677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/28/2022]
Abstract
Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid--pH 1.8--in 70:30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75:25-25:75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.
Collapse
|
27
|
Barba C, Scott S, Kelly R, Luis Parra J, Coderch L. New anionic surface-active agent derived from wool proteins for hair treatment. J Appl Polym Sci 2010. [DOI: 10.1002/app.31065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Zoccola M, Aluigi A, Tonin C. Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.08.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
|