1
|
Magnano GC, Quadri M, Palazzo E, Lotti R, Loschi F, Dall'Acqua S, Abrami M, Larese Filon F, Marconi A, Hasa D. 3D human foreskin model for testing topical formulations of sildenafil citrate. Int J Pharm 2024; 649:123612. [PMID: 37992980 DOI: 10.1016/j.ijpharm.2023.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Sildenafil citrate is an approved drug used for the treatment of erectile dysfunction and premature ejaculation. Despite a widespread application, sildenafil citrate shows numerous adverse cardiovascular effects in high-risk patients. Local transdermal drug delivery of this drug is therefore being explored as an interesting and noninvasive alternative administration method that avoids adverse effects arised from peak plasma drug concentrations. Although human and animal skin represents the most reliable models to perform penetration studies, they involve a series of ethical issues and restrictions. For these reasons new in vitro approaches based on artificially reconstructed human skin or "human skin equivalents" are being developed as possible alternatives for transdermal testing. There is little information, however, on the efficiency of such new in vitro methods on cutaneous penetration of active ingredients. The objective of the current study was to investigate the sildenafil citrate loaded in three commercial transdermal vehicles using 3D full-thickness skin equivalent and compare the results with the permeability experiments using porcine skin. Our results demonstrated that, while the formulation plays an imperative role in an appropriate dermal uptake of sildenafil citrate, the D coefficient results obtained by using the 3D skin equivalent are comparable to those obtained by using the porcine skin when a simple drug suspension is applied (1.17 × 10-10 ± 0.92 × 10-10 cm2/s vs 3.5 × 102 ± 3.3 × 102 cm2/s), suggesting that in such case, this 3D skin model can be a valid alternative for ex-vivo skin absorption experiments.
Collapse
Affiliation(s)
- Greta Camilla Magnano
- Clinical Unit of Occupational Medicine, University of Trieste, Italy; Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy.
| | - Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Loschi
- Department of Pharmaceutical Science and Pharmacology, University of Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Science and Pharmacology, University of Padova, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Italy
| | | | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy.
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy.
| |
Collapse
|
2
|
Liu S, Huang S, Liu K, Han Y, Xiong F. The novel design of an intelligent anti-depression transdermal drug delivery system. Biomaterials 2023; 303:122362. [PMID: 37931455 DOI: 10.1016/j.biomaterials.2023.122362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Depression is a type of mental disorder with a significant and persistent low mood as the main clinical feature. It is often accompanied by symptoms such as slow thinking, decreased will, loss of appetite, and weight loss. The current treatment methods for depression are mainly medical treatment, psychotherapy, and physical therapy. These treatments are dependent on the patient's autonomy and the patients may suspend treatment due to forgetting or refusing. Therefore, an anti-depressant intelligent drug release system was designed, which can achieve autonomously controlled doses for the treatment of depression by transdermal drug delivery system. The work of this study is as follows: (1) The first module: the electrothermal material heating layer. Several preparation methods were screened, and multiple sets of graphene (GE) electric thermogenic layers were successfully prepared. After increasing the actual energization area to 1 cm × 1 cm, the GE electric thermogenic layer is used as the heating layer of the electrothermal material of the system, and can reach a uniform surface temperature of (45 ± 0.5) °C within 15 s at a voltage of 6 V keeping the temperature fluctuation range not exceeding ±0.03 °C, and the resistance fluctuation range not exceeding ±20 Ω, which plays a role in controlling the temperature and heat treatment of the drug loaded gel layer. (2) The second module: the drug-loaded gel layer. Based on the L16 (45) orthogonal test, the best formulation and process of N-Isopropyl acrylamide-Acrylamide copolymer (P(NIPAAm-co-AAm)) hydrogel was determined. Then, the percutaneous permeability of Selegiline liposome was studied in vitro. (3) A rat model of depression was established using chronic unpredictable mild stress (CUMS) combined with separation. From the aspects of behavior (body weight, sucrose preference test, forced swimming test, open field test) and biochemical indexes (serum proinflammatory cytokines (IL-1β, TNF-α), hippocampus HE staining observation), the therapeutic effect of hyperthermia, Selegiline oral administration and transdermal administration was discussed.
Collapse
Affiliation(s)
- Sijia Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shengxin Huang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kunliang Liu
- Department of Research and Development, Jinan Guoke Medical Technology Development Co., Ltd., China
| | - Yuexia Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, 100094, China.
| | - Fei Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
3
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
4
|
Lotfipour F, Shahi S, Khezri K, Salatin S, Dizaj SM. Safety issues of nanomaterials for dermal pharmaceutical products. Pharm Nanotechnol 2022; 10:PNT-EPUB-122273. [PMID: 35382729 DOI: 10.2174/1871520622666220405093811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Nanomaterials (NMs) have favorable application in the medicine area, specifically in regard to the carry of pharmaceutical ingredients to provide targeted drug delivery systems. The skin is an excellent route for the delivery of pharmaceutical nano-transporters for skin-related applications. The physicochemical properties of nanomaterials such as size, hydrophobicity, loading capacity, charge and weight are vital for a skin penetrating system. Many nanocarriers such as polymeric nanoparticles, inorganic nanomaterials and, lipid nanostructures have been utilized for dermal delivery of active ingredients and others such as carbon nanotubes and fullerenes require more examination for future application in the skin-related area. Some negative side effects and nano-cytotoxicity of nanomaterials require special attention while investigating different nanomaterials for medicinal applications. Then, in the current review, we had a view on the safety issues of nanomaterials for dermal pharmaceutical products.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa,ON K1H 8M5, Canada
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Department of Endodontics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Dermal Delivery of Lipid Nanoparticles: Effects on Skin and Assessment of Absorption and Safety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:83-114. [DOI: 10.1007/978-3-030-88071-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ay Şenyiğit Z, Coşkunmeriç N, Çağlar EŞ, Öztürk İ, Atlıhan Gündoğdu E, Siafaka PI, Üstündağ Okur N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm Dev Technol 2021; 26:852-866. [PMID: 34193003 DOI: 10.1080/10837450.2021.1948570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of this study was to develop and examine the nanogel-based topical delivery system of mupirocin. Nanogels were prepared with chitosan and bovine serum albumin by ionic gelation and Carbopol 940 was added to improve the gelling/adhesive properties. Detailed characterization studies were performed and the cellular binding capacity of radiolabeled nanogels was investigated on CCD-1070Sk cell lines. Results indicate the successful formation of nanogels with particle size and zeta potential ranged between 341.920-603.320 nm and 13.120-24.300 mV, respectively. The mechanical and rheological studies proved pseudoplastic and strong elastic gel behavior (G' > G''). Mupirocin was successfully entrapped into nanogels with a ratio of more than 95% and the loaded drug was slowly released up to 93.89 ± 3.07% within 24 h. The ex vivo penetration and permeation percentages of mupirocin were very low (1.172 ± 0.202% and 0.161 ± 0.136%) indicating the suitability of nanogels for dermal use against superficial skin infections. The microbiological studies pointed out the effectiveness of nanogels against Staphylococcus aureus strains. Nanogels did not show toxicity signs and the cell binding capacity of radiolabeled formulations was found to be higher than [99mTc]NaTcO4 to CCD-1070Sk cell line. Overall, mupirocin nanogels might be considered as a potential and safe topical treatment option for bacterial skin infections.
Collapse
Affiliation(s)
- Zeynep Ay Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nesrin Coşkunmeriç
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - İsmail Öztürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Panoraia I Siafaka
- Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,KES College, Nicosia, Cyprus
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
Khezri K, Saeedi M, Morteza-Semnani K, Akbari J, Rostamkalaei SS. An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: kojic acid-solid lipid nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:841-853. [DOI: 10.1080/21691401.2020.1770271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Khadijeh Khezri
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal plant research center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| |
Collapse
|
8
|
de Oliveira D, de Andrade DF, de Oliveira EG, Beck RCR. Liquid chromatography method to assay tretinoin in skin layers: validation and application in skin penetration/retention studies. Heliyon 2019; 6:e03098. [PMID: 31909266 PMCID: PMC6940676 DOI: 10.1016/j.heliyon.2019.e03098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022] Open
Abstract
A liquid chromatography (LC) method for the quantification of tretinoin (TTN) in different matrices (adhesive tape, cotton and porcine skin layers, stratum corneum, viable epidermis, and dermis) was validated and applied in in vitro porcine skin penetration/retention studies. This study proposes, for the first time, a method for assaying TTN in separated porcine skin layers (stratum corneum, viable epidermis, and dermis). The skin studies were carried out using tape stripping and cutaneous retention techniques. The procedures for the extraction of TTN from dermatological formulations (creams and gels) and biological and non-biological matrices used with the tape stripping and retention techniques were also evaluated. The LC method consisted of a mobile phase composed of a mixture of methanol, water, and glacial acetic acid (85:15:1, v/v); a C18 column used as the stationary phase; a flow rate of 1.0 mL min−1; an injection volume of 100 μL; and TTN detection at 342 nm. The method was linear in the range of 0.05–15.00 μg mL−1 (r = 0.9999), and it was precise and accurate. The limit of detection (LOD) and limit of quantification (LOQ) were 0.0165 μg mL−1 and 0.0495 μg mL−1, respectively. TTN was extracted from different matrices, showing good precision [relative standard deviation (RSD) of <5%] and accuracy (89.4–113.9%). This method was successfully applied in the evaluation of TTN skin retention/permeation from dermatological formulations (cream and gel). A higher penetration of TTN through the skin was achieved with the gel rather than the cream, showing the influence of the dosage form. Therefore, the developed method can easily be applied in porcine skin penetration/retention studies of dermatological formulations containing TTN, and it is able to discriminate the behaviours of the different formulations.
Collapse
Affiliation(s)
- Dileusa de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Fontana de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edilene Gadelha de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Maretti E, Rustichelli C, Miselli P, Leo E, Truzzi E, Iannuccelli V. Self-assembled organogelators as artificial stratum corneum models: Key-role parameters for skin permeation prediction. Int J Pharm 2019; 557:314-328. [PMID: 30599224 DOI: 10.1016/j.ijpharm.2018.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Self-assembled organogelators were explored as artificial stratum corneum (SC) models for the in vitro skin permeation assessment. Four SC models consisting of binary (organogels) or ternary (microemulsion-based organogels) mixtures were developed using stearic acid, tristearin, or sorbitan tristearate, at two different concentrations, gelled in squalene. The permeation of lipophilic butyl-methoxydibenzoylmethane and hydrophilic methylene blue as the permeant compounds across the SC models was compared with ex vivo experiments using excised porcine ear skin. A multi-analytical approach was adopted to provide detailed understanding about organogelator organization within the SC models and find possible parameters playing key-roles in SC permeation prediction. The SC models were investigated for gelling properties and microstructure. Parameters such as gel occurrence, organogelator concentration, and rheological properties appeared as negligible conditions for skin permeation prediction. Conversely, arrangement packing, interactions, and crystallinity extent of the self-assembled organogelator were found to play a fundamental role in the simulation of SC barrier function according to the permeant feature.
Collapse
Affiliation(s)
- Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Paola Miselli
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
10
|
Schenk L, Rauma M, Fransson MN, Johanson G. Percutaneous absorption of thirty-eight organic solvents in vitro using pig skin. PLoS One 2018; 13:e0205458. [PMID: 30379962 PMCID: PMC6209206 DOI: 10.1371/journal.pone.0205458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Percutaneous absorption is highly variable between chemicals but also within chemicals depending on exposure conditions and experimental set up. We tested a larger number of organic solvents with the same experimental set up, using skin from new-born piglets and static diffusion cells. Thirty-six common organic solvents were studied neat (and 31 of them also in water dilution): acetone, acetonitrile, n-butanol 2-butanone 2-butoxyethanol, 1-butoxy-2-propanol, n-butyl acetate, butyl acrylate, cyclohexane, cyclohexanone, 1,2-dichloroethane, dichloromethane, ethanol, 2-ethoxyethanol, ethyl acetate, ethyl acrylate, ethylbenzene, furfuryl alcohol, n-hexane, 2-hexanone, 2-isopropoxyethanol, methanol, 1-methoxy-2-propanol, methyl acrylate, 3-methyl-1-butanol, methyl tertiary butyl ether, 4-metyl-2-pentanol, methyl methacrylate, 2-propanol, 2-propen-1-ol, 2-propoxyethanol, 1-propoxy-2-propanol, styrene, trichloromethane, toluene and m-xylene. In addition, a mixture of 2-methylbutyl acetate and n-pentyl acetate was tested. For most of the solvents, little or no percutaneous absorption data have been published. Lag times, steady-state fluxes and apparent permeability coefficients were obtained from the time courses of solvent appearance in the receptor medium, as measured by gas chromatography. The use of the same methodology and kind of skin resulted in small variability within experiments, underlining the need for consistent methodology for useful results for developing predictive models. Furthermore, a comparison of the neat and diluted data shows that water dilution affects all these variables and that the direction and magnitude of the effects vary between chemicals. This comparison strongly supports that prediction of percutaneous absorption of neat and water diluted chemicals requires different models.
Collapse
Affiliation(s)
- Linda Schenk
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Matias Rauma
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin N. Fransson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Johanson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
12
|
Effect of Skin Model on In Vitro Performance of an Adhesive Dermally Applied Microarray Coated with Zolmitriptan. JOURNAL OF PHARMACEUTICS 2018; 2018:7459124. [PMID: 29974005 PMCID: PMC6008839 DOI: 10.1155/2018/7459124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022]
Abstract
Franz cell studies, utilizing different human skin and an artificial membrane, evaluating the influence of skin model on permeation of zolmitriptan coated on an array of titanium microprojections, were evaluated. Full thickness and dermatomed ex vivo human skin, as well as a synthetic hydrophobic membrane (Strat-M®), were assessed. It was found that the choice of model demonstrated different absorption kinetics for the permeation of zolmitriptan. For the synthetic membrane only 11% of the zolmitriptan coated dose permeated into the receptor media, whilst for the dermatomed skin 85% permeated into the receptor. The permeation of zolmitriptan through full thickness skin had a significantly different absorption profile and time to maximum flux in comparison to the dermatomed skin and synthetic model. On the basis of these results dermatomed skin may be a better estimate of in vivo performance of drug-coated metallic microprojections.
Collapse
|
13
|
Montenegro L, Turnaturi R, Parenti C, Pasquinucci L. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations. Pharmaceutics 2018; 10:E27. [PMID: 29495452 PMCID: PMC5874840 DOI: 10.3390/pharmaceutics10010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 11/24/2022] Open
Abstract
The evaluation of UV-filter in vitro percutaneous absorption allows the estimation of the systemic exposure dose (SED) and the margin of safety (MoS) of sunscreen products. As both the vehicle and pattern of application may affect sunscreen safety and efficacy, we evaluated in vitro release and skin permeation of two widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM) from topical formulations with different features (oil in water (O/W) emulsions with different viscosity, water in oil (W/O) emulsion, oils with different lipophilicity). To mimic in-use conditions, we carried out experiments repeating sunscreen application on the skin surface for three consecutive days. BMBM release from all these vehicles was very low, thus leading to poor skin permeation. The vehicle composition significantly affected OMC release and skin permeation, and slight increases of OMC permeation were observed after repeated applications. From skin permeation data, SED and MoS values of BMBM and OMC were calculated for all the investigated formulations after a single application and repeated applications. While MoS values of BMBM were always well beyond the accepted safety limit, the safety of sunscreen formulations containing OMC may depend on the vehicle composition and the application pattern.
Collapse
Affiliation(s)
- Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rita Turnaturi
- Rita Turnaturi Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Carmela Parenti
- Carmela Parenti Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Lorella Pasquinucci
- Lorella Pasquinucci Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
14
|
Pires-de-Campos MSM, De Almeida J, Wolf-Nunes V, Souza-Francesconi E, Grassi-Kassisse DM. Ultrasound associated with caffeine increases basal and beta-adrenoceptor response in adipocytes isolated from subcutaneous adipose tissue in pigs. J COSMET LASER THER 2016; 18:116-23. [PMID: 26821226 DOI: 10.3109/14764172.2015.1063659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The topical use of caffeine has been indicated for the lipodystrophies treatment as it promotes increased lipolysis. Ultrasound (US) is often used in cutaneous diseases, esthetic conditions, and as a skin permeation enhancer. OBJECTIVE We investigate the lipolytic response of adipocytes isolated from subcutaneous adipose pigs tissue subjected to treatment with topical application of phonophoresis associated with caffeine. METHOD We treated dorsal regions of pigs (Landrace × Large White, 35 days, 15 kg, n = 6) daily for 15 days with gel, gel + US [3 MHz, continuous, 0.2 Wcm(2), 1 min/cm(2), in total 2 min], gel + caffeine (5%w/w), and gel + caffeine + US. We used a fifth untreated region as control. Twenty-four hours after the last application, we isolated the adipocytes of each treated area and quantified the basal and stimulated lipolytic responses to isoprenaline. The results, in μmol glycerol/10(6)cells/60 min, were analyzed with analysis of variance or ANOVA followed by Newman-Keuls test. The value of p < 0.05 was indicative of statistical difference. RESULTS Only the adipocytes isolated from the area treated with caffeine + US showed increased basal lipolysis (0.76 ± 0.26; p = 0.0276) and maximal isoprenaline stimulation (0.38 ± 0.15, p = 0.0029) compared with the other areas. CONCLUSION The results demonstrate that increased lipolysis of caffeine + US is due to an increase in basal and beta-adrenoceptor response by caffeine, and caffeine's effect is local, avoiding unwanted effects.
Collapse
Affiliation(s)
- Maria Silvia Mariani Pires-de-Campos
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil.,b Physiotherapy, Faculty of Health Sciences (FACIS) University Methodist of Piracicaba (UNIMEP) , Piracicaba , SP , Brazil
| | - Juliana De Almeida
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Valéria Wolf-Nunes
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Elaine Souza-Francesconi
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Dora Maria Grassi-Kassisse
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| |
Collapse
|
15
|
Marone PA, Birkenbach VL, Hayes AW. Newer Approaches to Identify Potential Untoward Effects in Functional Foods. Int J Toxicol 2015; 35:186-207. [DOI: 10.1177/1091581815616781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Globalization has greatly accelerated the numbers and variety of food and beverage products available worldwide. The exchange among greater numbers of countries, manufacturers, and products in the United States and worldwide has necessitated enhanced quality measures for nutritional products for larger populations increasingly reliant on functionality. These functional foods, those that provide benefit beyond basic nutrition, are increasingly being used for their potential to alleviate food insufficiency while enhancing quality and longevity of life. In the United States alone, a steady import increase of greater than 15% per year or 24 million shipments, over 70% products of which are food related, is regulated under the Food and Drug Administration (FDA). This unparalleled growth has resulted in the need for faster, cheaper, and better safety and efficacy screening methods in the form of harmonized guidelines and recommendations for product standardization. In an effort to meet this need, the in vitro toxicology testing market has similarly grown with an anticipatory 15% increase between 2010 and 2015 of US$1.3 to US$2.7 billion. Although traditionally occupying a small fraction of the market behind pharmaceuticals and cosmetic/household products, the scope of functional food testing, including additives/supplements, ingredients, residues, contact/processing, and contaminants, is potentially expansive. Similarly, as functional food testing has progressed, so has the need to identify potential adverse factors that threaten the safety and quality of these products.
Collapse
Affiliation(s)
- Palma Ann Marone
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
16
|
Hatanaka T, Yoshida S, Kadhum WR, Todo H, Sugibayashi K. In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals. Pharm Res 2015. [PMID: 26195007 DOI: 10.1007/s11095-015-1756-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop an in silico method based on Fick's law of diffusion to estimate the skin concentration following dermal exposure to chemicals with a wide range of lipophilicity. METHODS Permeation experiments of various chemicals were performed through rat and porcine skin. Permeation parameters, namely, permeability coefficient and partition coefficient, were obtained by the fitting of data to two-layered and one-layered diffusion models for whole and stripped skin. The mean skin concentration of chemicals during steady-state permeation was calculated using the permeation parameters and compared with the observed values. RESULTS All permeation profiles could be described by the diffusion models. The estimated skin concentrations of chemicals using permeation parameters were close to the observed levels and most data fell within the 95% confidence interval for complete prediction. The permeability coefficient and partition coefficient for stripped skin were almost constant, being independent of the permeant's lipophilicity. CONCLUSIONS Skin concentration following dermal exposure to various chemicals can be accurately estimated based on Fick's law of diffusion. This method should become a useful tool to assess the efficacy of topically applied drugs and cosmetic ingredients, as well as the risk of chemicals likely to cause skin disorders and diseases.
Collapse
Affiliation(s)
- Tomomi Hatanaka
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Shun Yoshida
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Wesam R Kadhum
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
17
|
Küchler S, Strüver K, Friess W. Reconstructed skin models as emerging tools for drug absorption studies. Expert Opin Drug Metab Toxicol 2013; 9:1255-63. [PMID: 23829446 DOI: 10.1517/17425255.2013.816284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION As humans can come into contact with xenobiotics intentionally or accidentally, knowledge about the skin absorption of these substances is crucial and requires reliable models and test procedures. Animal experiments should be avoided whenever possible, instead of making the use of in vitro systems. Furthermore, due to limited availability of normal and especially diseased human skin, alternative test systems such as reconstructed skin models are urgently required. AREAS COVERED This article discusses the advantages and limitations of excised human skin, animal skin and reconstructed skin models for absorption testing in vitro. Furthermore, the authors also describe the standard procedure for skin absorption testing and give an excursion to the applicability of artificial membranes. Finally, the article highlights the progress in the development of reconstructed disease models and provides an extensive overview about past and ongoing research in this field. EXPERT OPINION The development and validation of in vitro systems for skin absorption testing is inevitable. More research efforts are required for the development of reconstructed disease models. Reconstructed skin models need to be improved, especially in terms of complexity to mimic the in vivo situation better. It should not, however, be the main goal to imitate the in vivo situation exactly, but to establish reliable systems that ensure predictive and reliable data.
Collapse
Affiliation(s)
- Sarah Küchler
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität , Königin-Luise-Str. 2-4, 14195, Berlin , Germany +49 30 838 55065 ; +49 30 838 53944 ;
| | | | | |
Collapse
|
18
|
Chisvert A, León-González Z, Tarazona I, Salvador A, Giokas D. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Anal Chim Acta 2012; 752:11-29. [DOI: 10.1016/j.aca.2012.08.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
|
19
|
Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis. RESULTS IN PHARMA SCIENCES 2012; 2:72-8. [PMID: 25755997 PMCID: PMC4167178 DOI: 10.1016/j.rinphs.2012.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 11/23/2022]
Abstract
This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and SEM analyses revealed that CERs were suspended into the regenerated keratin matrix, even if a partial solubilization occurred. It resulted in the membranes being physically stable after exposure to aqueous buffer and/or mineral oil and the fluxes of ibuprofen and propranolol from these vehicles through membranes and human skin were of the same order of magnitude. The best relationship with human epidermis data was obtained with 180 μm-thick membrane containing 1% ceramide III and 1% ceramide VI. The data on the testosterone diffusion were affected by the exposure of the membrane to a water/ethanol solution over a prolonged period of time, indicating that such an organic solvent was able to modify the supermolecular organization of keratin and CERs. The keratin/CER membranes can represent a simplified model to assay the in vitro skin permeability study of small molecules.
Collapse
|
20
|
Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int J Pharm 2012; 434:80-9. [DOI: 10.1016/j.ijpharm.2012.05.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/25/2012] [Indexed: 11/23/2022]
|
21
|
Miquel-Jeanjean C, Crépel F, Raufast V, Payre B, Datas L, Bessou-Touya S, Duplan H. Penetration Study of Formulated Nanosized Titanium Dioxide in Models of Damaged and Sun-Irradiated Skins. Photochem Photobiol 2012; 88:1513-21. [DOI: 10.1111/j.1751-1097.2012.01181.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Krulikowska M, Arct J, Lucova M, Cetner B, Majewski S. Artificial membranes as models in penetration investigations. Skin Res Technol 2012; 19:e139-45. [DOI: 10.1111/j.1600-0846.2012.00620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | - J. Arct
- Academy of Cosmetics and Health Care; Warsaw; Poland
| | - M. Lucova
- Slovak University of Technology in Bratislava; Bratislava; Slovak Republic
| | - B. Cetner
- Warsaw University of Technology, Faculty of Chemistry
| | | |
Collapse
|
23
|
On the assessment of photostability of sunscreens exposed to UVA irradiation: From glass plates to pig/human skin, which is best? Int J Pharm 2012; 427:217-23. [DOI: 10.1016/j.ijpharm.2012.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 01/01/2023]
|
24
|
Berbicz F, Nogueira AC, Medina Neto A, Natali MRM, Baesso ML, Matioli G. Use of photoacoustic spectroscopy in the characterization of inclusion complexes of benzophenone-3-hydroxypropyl-β-cyclodextrin and ex vivo evaluation of the percutaneous penetration of sunscreen. Eur J Pharm Biopharm 2011; 79:449-57. [PMID: 21458567 DOI: 10.1016/j.ejpb.2011.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/09/2011] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
This work is aimed to evaluate the application of photoacoustic spectroscopy (PAS) in the characterization of inclusion complexes of benzophenone-3 (BZ-3) and hydroxypropyl-β-cyclodextrin (HPCD) and to analyze the ex vivo percutaneous penetration of sunscreens and their reaction with the skin. The formation of inclusion complexes of BZ-3 and HPCD was performed by co-precipitation in stoichiometric ratios of 1:1 and 1:2. Thermal analysis and PAS characterized these inclusion complexes, and they indicated that the stoichiometric ratio of 1:2 was best. Sunscreen formulations were prepared and applied on the ears of rabbits. PAS suggested that the formulation with the complex resulted in lower penetration of BZ-3. Histological analysis demonstrated that the use of the formulation with BZ-3 was associated with an increase in the comedogenic effect and the presence of acanthosis, while no such effect was found in the formulation with the complex. The formulation with the BZ-3-HPCD complex is a promising strategy for improving the photoprotective effect of BZ-3. PAS can be used in the study of inclusion complexes with cyclodextrins and the evaluation of the percutaneous penetration of sunscreen formulations. Further tests are being conducted using PAS to monitor in vivo changes in the optical absorption spectra of formulations and to investigate their photostability.
Collapse
Affiliation(s)
- Fernanda Berbicz
- Pharmacy Department, State University of Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Bailey SH, Brown SA, Kim Y, Oni G, Abtahi F, Richardson JA, Hoopman J, Barton F, Kenkel JM. An intra-individual quantitative assessment of acute laser injury patterns in facial versus abdominal skin. Lasers Surg Med 2011; 43:99-107. [DOI: 10.1002/lsm.21015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur J Pharm Biopharm 2010; 76:443-9. [DOI: 10.1016/j.ejpb.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 07/29/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
|