1
|
Pena AM, Ito S, Bornschlögl T, Brizion S, Wakamatsu K, Del Bino S. Multiphoton FLIM Analyses of Native and UVA-Modified Synthetic Melanins. Int J Mol Sci 2023; 24:4517. [PMID: 36901948 PMCID: PMC10002570 DOI: 10.3390/ijms24054517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
To better understand the impact of solar light exposure on human skin, the chemical characterization of native melanins and their structural photo-modifications is of central interest. As the methods used today are invasive, we investigated the possibility of using multiphoton fluorescence lifetime (FLIM) imaging, along with phasor and bi-exponential fitting analyses, as a non-invasive alternative method for the chemical analysis of native and UVA-exposed melanins. We demonstrated that multiphoton FLIM allows the discrimination between native DHI, DHICA, Dopa eumelanins, pheomelanin, and mixed eu-/pheo-melanin polymers. We exposed melanin samples to high UVA doses to maximize their structural modifications. The UVA-induced oxidative, photo-degradation, and crosslinking changes were evidenced via an increase in fluorescence lifetimes along with a decrease in their relative contributions. Moreover, we introduced a new phasor parameter of a relative fraction of a UVA-modified species and provided evidence for its sensitivity in assessing the UVA effects. Globally, the fluorescence lifetime properties were modulated in a melanin-dependent and UVA dose-dependent manner, with the strongest modifications being observed for DHICA eumelanin and the weakest for pheomelanin. Multiphoton FLIM phasor and bi-exponential analyses hold promising perspectives for in vivo human skin mixed melanins characterization under UVA or other sunlight exposure conditions.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | | | | | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Sandra Del Bino
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| |
Collapse
|
2
|
Pena AM, Decencière E, Brizion S, Sextius P, Koudoro S, Baldeweck T, Tancrède-Bohin E. In vivo melanin 3D quantification and z-epidermal distribution by multiphoton FLIM, phasor and Pseudo-FLIM analyses. Sci Rep 2022; 12:1642. [PMID: 35102172 PMCID: PMC8803839 DOI: 10.1038/s41598-021-03114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Characterizing melanins in situ and determining their 3D z-epidermal distribution is paramount for understanding physiological/pathological processes of melanin neosynthesis, transfer, degradation or modulation with external UV exposure or cosmetic/pharmaceutical products. Multiphoton fluorescence intensity- and lifetime-based approaches have been shown to afford melanin detection, but how can one quantify melanin in vivo in 3D from multiphoton fluorescence lifetime (FLIM) data, especially since FLIM imaging requires long image acquisition times not compatible with 3D imaging in a clinical setup? We propose an approach combining (i) multiphoton FLIM, (ii) fast image acquisition times, and (iii) a melanin detection method called Pseudo-FLIM, based on slope analysis of autofluorescence intensity decays from temporally binned data. We compare Pseudo-FLIM to FLIM bi-exponential and phasor analyses of synthetic melanin, melanocytes/keratinocytes coculture and in vivo human skin. Using parameters of global 3D epidermal melanin density and z-epidermal distribution profile, we provide first insights into the in vivo knowledge of 3D melanin modulations with constitutive pigmentation versus ethnicity, with seasonality over 1 year and with topical application of retinoic acid or retinol on human skin. Applications of Pseudo-FLIM based melanin detection encompass physiological, pathological, or environmental factors-induced pigmentation modulations up to whitening, anti-photoaging, or photoprotection products evaluation.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France.
| | | | - Sébastien Brizion
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Peggy Sextius
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Serge Koudoro
- MINES ParisTech - PSL Research University, Fontainebleau, France
| | - Thérèse Baldeweck
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Campus Charles Zviak RIO, 9 rue Pierre Dreyfus, Clichy, France
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
3
|
Alex A, Chaney EJ, Žurauskas M, Criley JM, Spillman DR, Hutchison PB, Li J, Marjanovic M, Frey S, Arp Z, Boppart SA. In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Exp Dermatol 2020; 29:953-960. [PMID: 33311854 PMCID: PMC7725480 DOI: 10.1111/exd.14152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Minipig skin is one of the most widely used non-rodent animal skin models for dermatological research. A thorough characterization of minipig skin is essential for gaining deeper understanding of its structural and functional similarities with human skin. In this study, three-dimensional (3-D) in vivo images of minipig skin was obtained non-invasively using a multimodal optical imaging system capable of acquiring two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy (FLIM) images simultaneously. The images of the structural features of different layers of the minipig skin were qualitatively and quantitatively compared with those of human skin. Label-free imaging of skin was possible due to the endogenous fluorescence and optical properties of various components in the skin such as keratin, nicotinamide adenine dinucleotide phosphate (NAD(P)H), melanin, elastin, and collagen. This study demonstrates the capability of optical biopsy techniques, such as TPEF and FLIM, for in vivo non-invasive characterization of cellular and functional features of minipig skin, and the optical image-based similarities of this commonly utilized model of human skin. These optical imaging techniques have the potential to become promising tools in dermatological research for developing a better understanding of animal skin models, and for aiding in translational pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Aneesh Alex
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- GSK, Collegeville, PA, USA
| | - Eric J. Chaney
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer M. Criley
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Darold R. Spillman
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phaedra B. Hutchison
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Li
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Stephen A. Boppart
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment. MICROMACHINES 2019; 10:mi10090564. [PMID: 31454918 PMCID: PMC6780561 DOI: 10.3390/mi10090564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
Collapse
|
5
|
Majdzadeh A, Lee AMD, Wang H, Lui H, McLean DI, Crawford RI, Zloty D, Zeng H. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:141-8. [PMID: 25650100 DOI: 10.1111/phpp.12161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. METHODS We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. RESULTS MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. CONCLUSION This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ.
Collapse
Affiliation(s)
- Ali Majdzadeh
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Fereidouni F, Bader AN, Colonna A, Gerritsen HC. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. JOURNAL OF BIOPHOTONICS 2014; 7:589-96. [PMID: 23576407 DOI: 10.1002/jbio.201200244] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/27/2013] [Accepted: 03/16/2013] [Indexed: 05/25/2023]
Abstract
Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited autofluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral features. Various structures in the skin could be distinguished, including Stratum Corneum, epidermal cells and dermis. The spectral phasor analysis allowed investigation of their fluorescence composition and identification of signals from NADH, keratin, FAD, melanin, collagen and elastin. Interestingly, two populations of epidermal cells could be distinguished with different melanin content.
Collapse
Affiliation(s)
- Farzad Fereidouni
- Utrecht University, Department of Molecular Biophysics, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
8
|
Koehler MJ, Kellner K, Hipler UC, Kaatz M. Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 2014; 21:137-43. [PMID: 25066913 DOI: 10.1111/srt.12168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND In vivo multiphoton tomography (MPT) of human skin has become a valuable tool for non-invasive examination of morphological and biophysical skin properties and their alterations. So far, skin changes after UVB irradiation were mainly evaluated clinically and histologically. The present study aimed at non-invasive imaging of histological changes during acute UVB irradiation by multiphoton laser tomography. METHODS In 10 volunteers, five areas were irradiated once with an erythematous UVB dose. Multiphoton measurements were performed four times, i.e. before irradiation (baseline), and 24, 48 and 72 h after irradiation, respectively. The data were evaluated for changes of epidermal pleomorphy, spongiosis, pigmentation and thickness. RESULTS The four parameters were altered significantly by acute UVB irradiation, i.e. epidermal pleomorphy, spongiosis, pigmentation and thickness increased within 72 h after irradiation. CONCLUSION Thus, the study has shown that typical epidermal changes induced by acute UVB irradiation can be evaluated by MPT.
Collapse
Affiliation(s)
- M J Koehler
- Department of Dermatology, SRH Waldklinikum Gera, Gera, Germany; Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | | | | |
Collapse
|
9
|
Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur J Pharm Biopharm 2011; 77:469-88. [DOI: 10.1016/j.ejpb.2010.12.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 12/16/2022]
|
10
|
Bader AN, Pena AM, Johan van Voskuilen C, Palero JA, Leroy F, Colonna A, Gerritsen HC. Fast nonlinear spectral microscopy of in vivo human skin. BIOMEDICAL OPTICS EXPRESS 2011; 2:365-73. [PMID: 21339881 PMCID: PMC3038451 DOI: 10.1364/boe.2.000365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/17/2010] [Accepted: 01/14/2100] [Indexed: 05/25/2023]
Abstract
An optimized system for fast, high-resolution spectral imaging of in vivo human skin is developed and evaluated. The spectrograph is composed of a dispersive prism in combination with an electron multiplying CCD camera. Spectra of autofluorescence and second harmonic generation (SHG) are acquired at a rate of 8 kHz and spectral images within seconds. Image quality is significantly enhanced by the simultaneous recording of background spectra. In vivo spectral images of 224 × 224 pixels were acquired, background corrected and previewed in real RGB color in 6.5 seconds. A clear increase in melanin content in deeper epidermal layers in in vivo human skin was observed.
Collapse
Affiliation(s)
- Arjen N. Bader
- Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Ana-Maria Pena
- L'Oréal Recherche et Innovation, 93600 Aulnay-sous-Bois, France
| | | | - Jonathan A. Palero
- Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
- Present address, ICFO, 08860 Castelldefels, Spain
| | - Frédéric Leroy
- L'Oréal Recherche et Innovation, 93600 Aulnay-sous-Bois, France
| | - Anne Colonna
- L'Oréal Recherche et Innovation, 93600 Aulnay-sous-Bois, France
| | - Hans C. Gerritsen
- Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| |
Collapse
|