1
|
Kwok ACM, Leung SK, Wong JTY. DNA:RNA Hybrids Are Major Dinoflagellate Minicircle Molecular Types. Int J Mol Sci 2023; 24:ijms24119651. [PMID: 37298602 DOI: 10.3390/ijms24119651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Peridinin-containing dinoflagellate plastomes are predominantly encoded in nuclear genomes, with less than 20 essential chloroplast proteins carried on "minicircles". Each minicircle generally carries one gene and a short non-coding region (NCR) with a median length of approximately 400-1000 bp. We report here differential nuclease sensitivity and two-dimensional southern blot patterns, suggesting that dsDNA minicircles are in fact the minor forms, with substantial DNA:RNA hybrids (DRHs). Additionally, we observed large molecular weight intermediates, cell-lysate-dependent NCR secondary structures, multiple bidirectional predicted ssDNA structures, and different southern blot patterns when probed with different NCR fragments. In silico analysis suggested the existence of substantial secondary structures with inverted repeats (IR) and palindrome structures within the initial ~650 bp of the NCR sequences, in accordance with conversion event(s) outcomes with PCR. Based on these findings, we propose a new transcription-templating-translation model, which is associated with cross-hopping shift intermediates. Since dinoflagellate chloroplasts are cytosolic and lack nuclear envelope breakdown, the dynamic DRH minicircle transport could have contributed to the spatial-temporal dynamics required for photosystem repair. This represents a paradigm shift from the previous understanding of "minicircle DNAs" to a "working plastome", which will have significant implications for its molecular functionality and evolution.
Collapse
Affiliation(s)
- Alvin Chun Man Kwok
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Siu Kai Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Bowazolo C, Morse D. Insights into daily metabolic changes of the dinoflagellate Lingulodinium from ribosome profiling. Cell Cycle 2023; 22:1343-1352. [PMID: 37125841 PMCID: PMC10228409 DOI: 10.1080/15384101.2023.2206771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/02/2023] Open
Abstract
The dinoflagellate Lingulodinium specializes its metabolism to perform different tasks better at specific times of day. For example, cells are specialized for photosynthesis during the day and bioluminescence and cell division at night. These rhythms are circadian as they are controlled by an endogenous circadian clock whose mechanism is currently unknown. Despite this, the metabolic rhythms follow coordinated changes in gene expression that occur at a translational level. These changes are revealed by ribosome profiling, a surrogate measure of protein synthesis rates in vivo. Lingulodinium regulates the synthesis rate of over three thousand transcripts. Peak synthesis rates for the different transcripts are clustered around three different times over a light/dark cycle. Furthermore, transcripts involved in the same metabolic process are coordinately regulated. We review the basic principles underlying the correlation of coordinated translation of cell metabolic pathway enzymes with known circadian rhythms, and offer examples where previously unsuspected rhythms are suggested by synchronized changes in gene expression.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Orchestrated translation specializes dinoflagellate metabolism three times per day. Proc Natl Acad Sci U S A 2022; 119:e2122335119. [PMID: 35858433 PMCID: PMC9335273 DOI: 10.1073/pnas.2122335119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many cells specialize for different metabolic tasks at different times over their normal ZT cycle by changes in gene expression. However, in most cases, circadian gene expression has been assessed at the mRNA accumulation level, which may not faithfully reflect protein synthesis rates. Here, we use ribosome profiling in the dinoflagellate Lingulodinium polyedra to identify thousands of transcripts showing coordinated translation. All of the components in carbon fixation are concurrently regulated at ZT0, predicting the known rhythm of carbon fixation, and many enzymes involved in DNA replication are concurrently regulated at ZT12, also predicting the known rhythm in this process. Most of the enzymes in glycolysis and the TCA cycle are also regulated together, suggesting rhythms in these processes as well. Surprisingly, a third cluster of transcripts show peak translation at approximately ZT16, and these transcripts encode enzymes involved in transcription, translation, and amino acid biosynthesis. The latter has physiological consequences, as measured free amino acid levels increase at night and thus represent a previously undocumented rhythm in this model. Our results suggest that ribosome profiling may be a more accurate predictor of changed metabolic state than transcriptomics.
Collapse
|
4
|
Bowazolo C, Tse SPK, Beauchemin M, Lo SCL, Rivoal J, Morse D. Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135430. [PMID: 31818571 DOI: 10.1016/j.scitotenv.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Protein levels were assessed in the dinoflagellate Lingulodinium polyedra over the course of a diurnal cycle using a label-free LC-MS/MS approach. Roughly 1700 proteins were quantitated in a triplicate dataset over a daily period, and 13 were found to show significant rhythmic changes. Included among the proteins found to be most abundant at night were the two bioluminescence proteins, luciferase and luciferin binding protein, as well as a proliferating cell nuclear protein involved in the nightly DNA replication. Aconitase and a pyrophosphate fructose-6-phosphate-1-phosphotransferase were also found to be more abundant at night, suggestive of an increased ability to generate ATP by glucose catabolism when photosynthesis does not occur. Among the proteins more abundant during the day were found a 2-epi-5-epi-valiolone synthase, potentially involved in synthesis of mycosporin-like amino acids that can act as a "microbial sunscreen", and an enzyme synthesizing vitamin B6 which is known to protect against oxidative stress. A lactate oxidoreductase was also found to be more abundant during the day, perhaps to counteract the pH changes due to carbon fixation by facilitating conversion of pyruvate to lactate. This unbiased proteomic approach reveals novel insights into the daily metabolic changes of this dinoflagellate. Furthermore, the observation that only a limited number of proteins vary support a model where metabolic flux through pathways can be controlled by variations in a select few, possibly rate limiting, steps. Data are available via ProteomeXchange with identifier PXD006994.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mathieu Beauchemin
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Samuel C-L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean Rivoal
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
5
|
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ. Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid. Protist 2019; 170:358-373. [PMID: 31415953 DOI: 10.1016/j.protis.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.
Collapse
Affiliation(s)
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
6
|
Chang AY, Marshall WF. Organelles - understanding noise and heterogeneity in cell biology at an intermediate scale. J Cell Sci 2017; 130:819-826. [PMID: 28183729 DOI: 10.1242/jcs.181024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular 'noise' that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients.
Collapse
Affiliation(s)
- Amy Y Chang
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Dagenais-Bellefeuille S, Beauchemin M, Morse D. miRNAs Do Not Regulate Circadian Protein Synthesis in the Dinoflagellate Lingulodinium polyedrum. PLoS One 2017; 12:e0168817. [PMID: 28103286 PMCID: PMC5245829 DOI: 10.1371/journal.pone.0168817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellates have been shown to express miRNA by bioinformatics and RNA blot (Northern) analyses. However, it is not yet known if miRNAs are able to alter gene expression in this class of organisms. We have assessed the possibility that miRNA may mediate circadian regulation of gene expression in the dinoflagellate Lingulodinium polyedrum using the Luciferin Binding Protein (LBP) as a specific example. LBP is a good candidate for regulation by miRNA since mRNA levels are constant over the daily cycle while protein synthesis is restricted by the circadian clock to a period of several hours at the start of the night phase. The transcriptome contains a potential DICER and an ARGONAUTE, suggesting the machinery for generating miRNAs is present. Furthermore, a probe directed against an abundant Symbiodinium miRNA cross reacts on Northern blots. However, L. polyedrum has no small RNAs detectable by ethidium bromide staining, even though higher plant miRNAs run in parallel are readily observed. Illumina sequencing of small RNAs showed that the majority of reads did not have a match in the L. polyedrum transcriptome, and those that did were almost all sense strand mRNA fragments. A direct search for 18-26 nucleotide long RNAs capable of forming duplexes with a 2 base 3' overhang detected 53 different potential miRNAs, none of which was able to target any of the known circadian regulated genes. Lastly, a microscopy-based test to assess synthesis of the naturally fluorescent LBP in single cells showed that neither double-stranded nor antisense lbp RNA introduced into cells by microparticle bombardment prior to the time of LBP synthesis were able to reduce the amount of LBP produced. Taken together, our results indicate that circadian control of protein synthesis in L. polyedrum is not mediated by miRNAs.
Collapse
Affiliation(s)
- Steve Dagenais-Bellefeuille
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Beauchemin
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Dorrell RG, Klinger CM, Newby RJ, Butterfield ER, Richardson E, Dacks JB, Howe CJ, Nisbet ER, Bowler C. Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Mol Biol Evol 2016; 34:361-379. [DOI: 10.1093/molbev/msw235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Comparing the diel vertical migration of Karlodinium veneficum (dinophyceae) and Chattonella subsalsa (Raphidophyceae): PSII photochemistry, circadian control, and carbon assimilation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:107-19. [PMID: 25618815 DOI: 10.1016/j.jphotobiol.2014.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/06/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Diel vertical migration (DVM) is thought to provide an adaptive advantage to some phytoplankton, and may help determine the ecological niche of certain harmful algae. Here we separately compared DVM patterns between two species of harmful algae isolated from the Delaware Inland Bays, Karlodinium veneficum and Chattonella subsalsa, in laboratory columns. We interpreted the DVM patterns of each species with Photosystem II (PSII) photochemistry, rates of carbon assimilation, and specific growth rates. Each species migrated differently, wherein K. veneficum migrated closer to the surface each day with high population synchrony, while C. subsalsa migrated near to the surface from the first day of measurements with low population synchrony. Both species appeared to downregulate PSII in high light at the surface, but by different mechanisms. C. subsalsa grew slower than K. veneficum in low light intensities (≈bottom of columns), and exhibited maximal rates of C-assimilation (Pmax) at surface light intensities, suggesting this species may prefer high light, potentially explaining this species' rapid surface migration. Contrastingly, K. veneficum showed declines in carbon assimilation at surface light intensities, and exhibited a smaller reduction in growth at low (bottom) light intensities (compared to C. subsalsa), suggesting that this species' step-wise migration was photoacclimative and determined daily migration depth. DVM was found to be under circadian control in C. subsalsa, but not in K. veneficum. However, there was little evidence for circadian regulation of PSII photochemistry in either species. Migration conformed to each species' physiology, and the results contribute to our understanding each alga's realized environmental niche.
Collapse
|
10
|
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:181-90. [PMID: 23529849 DOI: 10.1007/s11120-013-9811-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.
Collapse
Affiliation(s)
- Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK,
| | | | | | | | | |
Collapse
|
11
|
Tandem repeats, high copy number and remarkable diel expression rhythm of form II RuBisCO in Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e71232. [PMID: 23976999 PMCID: PMC3747160 DOI: 10.1371/journal.pone.0071232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
Gene structure and expression regulation of form II RuBisCO (rbcII) in dinoflagellates are still poorly understood. Here we isolated this gene (Pdrbc) and investigated its diel expression pattern in a harmful algal bloom forming dinoflagellate Prorocentrum donghaiense. We obtained cDNA sequences with triple tandem repeats of the coding unit (CU); the 5′ region has the sequence of a typical dinoflagellate plastid gene, encoding an N-terminus with two transmembrane regions separated by a plastid transit peptide. The CUs (1,455 bp except 1464 bp in last CU) are connected through a 63 bp spacer. Phylogenetic analysis showed that rbcII CUs within species formed monophyletic clusters, indicative of intraspecific gene duplication or purifying evolution. Using quantitative PCR (qPCR) we estimated 117±40 CUs of Pdrbc in the P. donghaiense genome. Although it is commonly believed that most dinoflagellate genes lack transcriptional regulation, our RT-qPCR analysis on synchronized cultures revealed remarkable diel rhythm of Pdrbc expression, showing significant correlations of transcript abundance with the timing of the dark-to-light transition and cell cycle G2M-phase. When the cultures were shifted to continuous light, Pdrbc expression remained significantly correlated with the G2M-phase. Under continuous darkness the cell cycle was arrested at the G1 phase, and the rhythm of Pdrbc transcription disappeared. Our results suggest that dinoflagellate rbcII 1) undergoes duplication or sequence purification within species, 2) is organized in tandem arrays in most species probably to facilitate efficient translation and import of the encoded enzyme, and 3) is regulated transcriptionally in a cell cycle-dependent fashion at least in some dinoflagellates.
Collapse
|
12
|
Meyer M, Griffiths H. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:769-86. [PMID: 23345319 DOI: 10.1093/jxb/ers390] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The importance of the eukaryotic algal CO(2)-concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are set against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, S(rel), and affinity for CO(2), K(c)) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Moritz Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
13
|
Mackenzie TDB, Morse D. Circadian photosynthetic reductant flow in the dinoflagellate Lingulodinium is limited by carbon availability. PLANT, CELL & ENVIRONMENT 2011; 34:669-680. [PMID: 21309795 DOI: 10.1111/j.1365-3040.2010.02271.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Circadian rhythms are the observed outputs of endogenous daily clocks and are thought to provide a selective advantage to cells adapted to daily light/dark cycles. However, the biochemical links between the clock and the overt rhythms in cell physiology are generally not known. Here, we examine the circadian rhythm in O₂ evolution by cultures of the dinoflagellate Lingulodinium, a rhythm previously ascribed to rhythmic electron flow through photosystem II. We find that O₂ evolution rates increase when CO₂ concentrations are increased, either following addition of DIC or a rapid decrease in culture pH. In medium containing only nitrate as an electron acceptor, O₂ evolution rates mirror the circadian rhythm of nitrate reductase activity in the cells. Furthermore, competition between photosynthetic electron flow to carbon and to nitrate varies in its relative efficiency through the day-night cycle. We also find, using simultaneous and continuous monitoring of pH and O₂ evolution rates over several days, that while culture pH is normally rhythmic, circadian changes in rates of O₂ evolution depend not on the external pH but on levels of internal electron acceptors. We propose that the photosynthetic electron transport rhythm in Lingulodinium is driven by the availability of a reductant sink.
Collapse
Affiliation(s)
- Tyler D B Mackenzie
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, Québec H1X2B2, Canada
| | | |
Collapse
|
14
|
Osafune T, Schwartzbach SD. Intracellular protein localization by immunoelectron microscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2007; 390:407-16. [PMID: 17951703 DOI: 10.1007/978-1-59745-466-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Eukaryotic cells are characterized by the presence of a number of membrane-bound organelles which have differing degrees of internal structure. After synthesis in the cytoplasm, proteins must be targeted to the appropriate organelle and localized to the correct suborganellular compartment. We describe a method for immunoelectron microscopy that can be used to localize a protein not only to the correct organelle but to the appropriate suborganellular compartment. Cells are fixed to preserve subcellular structures and ultrathin sections are labeled with a monospecific antibody to the protein of interest. Protein-A gold is used to visualize the antigen-antibody complex by transmission electron microscopy allowing the intracellular location of the antigen to be determined. The methodology described was developed to study protein localization in Euglena but it is applicable to most organisms.
Collapse
Affiliation(s)
- Tetsuaki Osafune
- Department of Life Sciences, Nippon Sport Science University, Yokohama, Japan
| | | |
Collapse
|