1
|
Zhao H, Yang S, Chen Q, Duan X, Li G, Huang Q, Zhu X, Yan X. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis. J Cell Sci 2020; 133:jcs241836. [PMID: 32503940 DOI: 10.1242/jcs.241836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxia Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiaomeng Duan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
3
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Vanova T, Konecna Z, Zbonakova Z, La Venuta G, Zoufalova K, Jelinkova S, Varecha M, Rotrekl V, Krejci P, Nickel W, Dvorak P, Kunova Bosakova M. Tyrosine Kinase Expressed in Hepatocellular Carcinoma, TEC, Controls Pluripotency and Early Cell Fate Decisions of Human Pluripotent Stem Cells via Regulation of Fibroblast Growth Factor-2 Secretion. Stem Cells 2017. [PMID: 28631381 DOI: 10.1002/stem.2660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.
Collapse
Affiliation(s)
- Tereza Vanova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zaneta Konecna
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Zbonakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Karolina Zoufalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | |
Collapse
|
5
|
Arcondéguy T, Touriol C, Lacazette E. Quantification of a Non-conventional Protein Secretion: The Low-Molecular-Weight FGF-2 Example. Methods Mol Biol 2016; 1459:127-134. [PMID: 27665555 DOI: 10.1007/978-1-4939-3804-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantification of secreted factors is most often measured with enzyme-linked immunosorbent assay (ELISA), Western Blot, or more recently with antibody arrays. However, some of these, like low-molecular-weight fibroblast growth factor-2 (LMW FGF-2; the 18 kDa form), exemplify a set of secreted but almost non-diffusible molecular actors. It has been proposed that phosphorylated FGF-2 is secreted via a non-vesicular mechanism and that heparan sulfate proteoglycans function as extracellular reservoir but also as actors for its secretion. Heparan sulfate is a linear sulfated polysaccharide present on proteoglycans found in the extracellular matrix or anchored in the plasma membrane (syndecan). Moreover the LMW FGF-2 secretion appears to be activated upon FGF-1 treatment. In order to estimate quantification of such factor export across the plasma membrane, technical approaches are presented (evaluation of LMW FGF-2: (1) secretion, (2) extracellular matrix reservoir, and (3) secretion modulation by surrounding factors) and the importance of such procedures in the comprehension of the biology of these growth factors is underlined.
Collapse
Affiliation(s)
- Tania Arcondéguy
- Centre de Recherches en Cancérologie de Toulouse - CRCT UMR1037 Inserm/Université Toulouse III Paul Sabatier ERL5294 CNRS, Oncopole de Toulouse 2 Avenue, Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France
| | - Christian Touriol
- Centre de Recherches en Cancérologie de Toulouse - CRCT UMR1037 Inserm/Université Toulouse III Paul Sabatier ERL5294 CNRS, Oncopole de Toulouse 2 Avenue, Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France
| | - Eric Lacazette
- Centre de Recherches en Cancérologie de Toulouse - CRCT UMR1037 Inserm/Université Toulouse III Paul Sabatier ERL5294 CNRS, Oncopole de Toulouse 2 Avenue, Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.
| |
Collapse
|
6
|
Mang J, Korzeniewski N, Dietrich D, Sailer V, Tolstov Y, Searcy S, von Hardenberg J, Perner S, Kristiansen G, Marx A, Roth W, Herpel E, Grüllich C, Popeneciu V, Pahernik S, Hadaschik B, Hohenfellner M, Duensing S. Prognostic Significance and Functional Role of CEP57 in Prostate Cancer. Transl Oncol 2015; 8:487-96. [PMID: 26692530 PMCID: PMC4700294 DOI: 10.1016/j.tranon.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/10/2015] [Indexed: 01/24/2023] Open
Abstract
We have recently shown that centrosomal protein 57 (CEP57) is overexpressed in a subset of human prostate cancers. CEP57 is involved in intracellular transport processes, and its overexpression causes mitotic defects as well as abnormal microtubule nucleation and bundling. In the present study, we further characterized the prognostic and functional role of CEP57 in prostate cancer. Unexpectedly, we found that high CEP57 expression is an independent prognostic factor for a more favorable biochemical recurrence-free survival in two large patient cohorts. To reconcile this finding with the ability of CEP57 to cause cell division errors and thus potentially promote malignant progression, we hypothesized that alterations of microtubule-associated transport processes, in particular nuclear translocation of the androgen receptor (AR), may play a role in our finding. However, CEP57 overexpression and microtubule bundling had, surprisingly, no effect on the nuclear translocation of the AR. Instead, we found a significant increase of cells with disarranged microtubules and a cellular morphology suggestive of a cytokinesis defect. Because mitotic dysfunction leads to a reduced daughter cell formation, it can explain the survival benefit of patients with increased CEP57 expression. In contrast, we show that a reduced expression of CEP57 is associated with malignant growth and metastasis. Taken together, our findings underscore that high CEP57 expression is associated with mitotic impairment and less aggressive tumor behavior. Because the CEP57-induced microtubule stabilization had no detectable effect on AR nuclear translocation, our results furthermore suggest that microtubule-targeting therapeutics used in advanced prostate cancer such as docetaxel may have modes of action that are at least in part independent of AR transport inhibition.
Collapse
Affiliation(s)
- Josef Mang
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Nina Korzeniewski
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Verena Sailer
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yanis Tolstov
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Sam Searcy
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Jost von Hardenberg
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Sven Perner
- Pathology Network of the University Hospital of Lübeck and Leibniz Research Center Borstel, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Glen Kristiansen
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Alexander Marx
- Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Wilfried Roth
- Institute of Pathology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 220/221, D-69120 Heidelberg, Germany
| | - Carsten Grüllich
- National Center for Tumor Diseases (NCT), Department of Medical Oncology, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Valentin Popeneciu
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Poirier JG, Brennan P, McKay JD, Spitz MR, Bickeböller H, Risch A, Liu G, Le Marchand L, Tworoger S, McLaughlin J, Rosenberger A, Heinrich J, Brüske I, Muley T, Henderson BE, Wilkens LR, Zong X, Li Y, Hao K, Timens W, Bossé Y, Sin DD, Obeidat M, Amos CI, Hung RJ. Informed genome-wide association analysis with family history as a secondary phenotype identifies novel loci of lung cancer. Genet Epidemiol 2015; 39:197-206. [PMID: 25644374 PMCID: PMC4554719 DOI: 10.1002/gepi.21882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Although several genetic variants associated with lung cancer have been identified in the past, stringent selection criteria of genome-wide association studies (GWAS) can lead to missed variants. The objective of this study was to uncover missed variants by using the known association between lung cancer and first-degree family history of lung cancer to enrich the variant prioritization for lung cancer susceptibility regions. In this two-stage GWAS study, we first selected a list of variants associated with both lung cancer and family history of lung cancer in four GWAS (3,953 cases, 4,730 controls), then replicated our findings for 30 variants in a meta-analysis of four additional studies (7,510 cases, 7,476 controls). The top ranked genetic variant rs12415204 in chr10q23.33 encoding FFAR4 in the Discovery set was validated in the Replication set with an overall OR of 1.09 (95% CI=1.04, 1.14, P=1.63×10(-4)). When combining the two stages of the study, the strongest association was found in rs1158970 at Ch4p15.2 encoding KCNIP4 with an OR of 0.89 (95% CI=0.85, 0.94, P=9.64×10(-6)). We performed a stratified analysis of rs12415204 and rs1158970 across all eight studies by age, gender, smoking status, and histology, and found consistent results across strata. Four of the 30 replicated variants act as expression quantitative trait loci (eQTL) sites in 1,111 nontumor lung tissues and meet the genome-wide 10% FDR threshold.
Collapse
Affiliation(s)
- Julia G. Poirier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James D. McKay
- International Agency for Research on Cancer, Lyon, France
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Geoffrey Liu
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Shelley Tworoger
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yafang Li
- Dartmouth Medical College, Hanover, New Hampshire, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Don D. Sin
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ma’en Obeidat
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Sletten T, Kostas M, Bober J, Sorensen V, Yadollahi M, Olsnes S, Tomala J, Otlewski J, Zakrzewska M, Wiedlocha A. Nucleolin regulates phosphorylation and nuclear export of fibroblast growth factor 1 (FGF1). PLoS One 2014; 9:e90687. [PMID: 24595027 PMCID: PMC3942467 DOI: 10.1371/journal.pone.0090687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Extracellular fibroblast growth factor 1 (FGF1) acts through cell surface tyrosine kinase receptors, but FGF1 can also act directly in the cell nucleus, as a result of nuclear import of endogenously produced, non-secreted FGF1 or by transport of extracellular FGF1 via endosomes and cytosol into the nucleus. In the nucleus, FGF1 can be phosphorylated by protein kinase C δ (PKCδ), and this event induces nuclear export of FGF1. To identify intracellular targets of FGF1 we performed affinity pull-down assays and identified nucleolin, a nuclear multifunctional protein, as an interaction partner of FGF1. We confirmed a direct nucleolin-FGF1 interaction by surface plasmon resonance and identified residues of FGF1 involved in the binding to be located within the heparin binding site. To assess the biological role of the nucleolin-FGF1 interaction, we studied the intracellular trafficking of FGF1. In nucleolin depleted cells, exogenous FGF1 was endocytosed and translocated to the cytosol and nucleus, but FGF1 was not phosphorylated by PKCδ or exported from the nucleus. Using FGF1 mutants with reduced binding to nucleolin and a FGF1-phosphomimetic mutant, we showed that the nucleolin-FGF1 interaction is critical for the intranuclear phosphorylation of FGF1 by PKCδ and thereby the regulation of nuclear export of FGF1.
Collapse
Affiliation(s)
- Torunn Sletten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Michal Kostas
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Joanna Bober
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Vigdis Sorensen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Mandana Yadollahi
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Sjur Olsnes
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Justyna Tomala
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antoni Wiedlocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
9
|
He R, Wu Q, Zhou H, Huang N, Chen J, Teng J. Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization. J Biol Chem 2013; 288:14384-14390. [PMID: 23569207 DOI: 10.1074/jbc.m112.441501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytokinesis is the final stage of cell division in which the cytoplasm of a cell is divided into two daughter cells after the segregation of genetic material, and the central spindle and midbody are considered to be the essential structures required for the initiation and completion of cytokinesis. Here, we determined that the centrosome protein Cep57, which is localized to the central spindle and midbody, acts as a spindle organizer and is required for cytokinesis. Depletion of Cep57 disrupted microtubule assembly of the central spindle and further led to abnormal midbody localization of MKLP1, Plk1, and Aurora B, which resulted in cytokinesis failure and the formation of binuclear cells. Furthermore, we found that Cep57 directly recruited Tektin 1 to the midbody matrix to regulate microtubule organization. Thus, our data reveal that Cep57 is essential for cytokinesis via regulation of central spindle assembly and formation of the midbody.
Collapse
Affiliation(s)
- Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qixi Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Haining Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Cuevas R, Korzeniewski N, Tolstov Y, Hohenfellner M, Duensing S. FGF-2 Disrupts Mitotic Stability in Prostate Cancer through the Intracellular Trafficking Protein CEP57. Cancer Res 2012; 73:1400-10. [DOI: 10.1158/0008-5472.can-12-1857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Vingtdeux V, Sergeant N, Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer's disease. Front Physiol 2012; 3:229. [PMID: 22783199 PMCID: PMC3389776 DOI: 10.3389/fphys.2012.00229] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of prion diseases, the concept has emerged that a protein could be a transmissible pathogen. As such, this transmissible pathogen agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolated to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease (AD). AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT). Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. NFT are characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal, and occipital cortex, the spreading of NFT is well correlated with clinical expression of the disease and likely follows cortico-cortical neuronal circuitry. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest that amyloid deposits and NFT are resulting from a prion-like spreading. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of AD lesions from the window of multivesicular endosomes/bodies and exosomes.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Manhasset, NY, USA
| | | | | |
Collapse
|
13
|
Wu Q, He R, Zhou H, Yu ACH, Zhang B, Teng J, Chen J. Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity. Cell Res 2012; 22:1390-401. [PMID: 22508265 DOI: 10.1038/cr.2012.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division. Spindle integrity is largely dependent on the centrosome and the microtubule network. Centrosome protein Cep57 can bundle microtubules in mammalian cells. Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment. Here we show that Cep57 is a pericentriolar material (PCM) component. Its interaction with NEDD1 is necessary for the centrosome localization of Cep57. Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle, which is induced by PCM fragmentation. In the absence of Cep57, centrosome microtubule array assembly activity is weakened, and the spindle length and microtubule density decrease. As a spindle microtubule-binding protein, Cep57 is also responsible for the proper organization of the spindle microtubule and localization of spindle pole focusing proteins. Collectively, these results suggest that Cep57, as a NEDD1-binding centrosome component, could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture.
Collapse
Affiliation(s)
- Qixi Wu
- The State Key Laboratory of Biomembrane and Membrane Bioengineering and The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhen Y, Sørensen V, Skjerpen CS, Haugsten EM, Jin Y, Wälchli S, Olsnes S, Wiedlocha A. Nuclear Import of Exogenous FGF1 Requires the ER-Protein LRRC59 and the Importins Kpnα1 and Kpnβ1. Traffic 2012; 13:650-64. [DOI: 10.1111/j.1600-0854.2012.01341.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | | | - Sebastien Wälchli
- Department of Immunology; Institute for Cancer Research; The Norwegian Radium Hospital; Montebello; Oslo; 0310; Norway
| | | | | |
Collapse
|
15
|
Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, Stevens MC, Calhoun VD, Glahn DC, Shen L, Risacher SL, Saykin AJ, Pearlson GD. A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer's disease in the ADNI cohort. Neuroimage 2012; 60:1608-21. [PMID: 22245343 DOI: 10.1016/j.neuroimage.2011.12.076] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/16/2022] Open
Abstract
The underlying genetic etiology of late onset Alzheimer's disease (LOAD) remains largely unknown, likely due to its polygenic architecture and a lack of sophisticated analytic methods to evaluate complex genotype-phenotype models. The aim of the current study was to overcome these limitations in a bi-multivariate fashion by linking intermediate magnetic resonance imaging (MRI) phenotypes with a genome-wide sample of common single nucleotide polymorphism (SNP) variants. We compared associations between 94 different brain regions of interest derived from structural MRI scans and 533,872 genome-wide SNPs using a novel multivariate statistical procedure, parallel-independent component analysis, in a large, national multi-center subject cohort. The study included 209 elderly healthy controls, 367 subjects with amnestic mild cognitive impairment and 181 with mild, early-stage LOAD, all of them Caucasian adults, from the Alzheimer's Disease Neuroimaging Initiative cohort. Imaging was performed on comparable 1.5 T scanners at over 50 sites in the USA/Canada. Four primary "genetic components" were associated significantly with a single structural network including all regions involved neuropathologically in LOAD. Pathway analysis suggested that each component included several genes already known to contribute to LOAD risk (e.g. APOE4) or involved in pathologic processes contributing to the disorder, including inflammation, diabetes, obesity and cardiovascular disease. In addition significant novel genes identified included ZNF673, VPS13, SLC9A7, ATP5G2 and SHROOM2. Unlike conventional analyses, this multivariate approach identified distinct groups of genes that are plausibly linked in physiologic pathways, perhaps epistatically. Further, the study exemplifies the value of this novel approach to explore large-scale data sets involving high-dimensional gene and endophenotype data.
Collapse
Affiliation(s)
- Shashwath A Meda
- Olin Neuropsychiatric Research Center, Hartford Hospital/IOL, Hartford, CT 06106, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Snape K, Hanks S, Ruark E, Barros-Núñez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D, Clayton-Smith J, Fitzpatrick DR, Gisselsson D, Jacquemont S, Asakura-Hay K, Micale MA, Tolmie J, Turnpenny PD, Wright M, Douglas J, Rahman N. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 2011; 43:527-9. [PMID: 21552266 PMCID: PMC3508359 DOI: 10.1038/ng.822] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/06/2011] [Indexed: 12/18/2022]
Abstract
Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.
Collapse
Affiliation(s)
- Katie Snape
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Miró M, Colomina N, Fernández RMH, Garí E, Gallego C, Aldea M. Translokin (Cep57) interacts with cyclin D1 and prevents its nuclear accumulation in quiescent fibroblasts. Traffic 2011; 12:549-62. [PMID: 21306487 DOI: 10.1111/j.1600-0854.2011.01176.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.
Collapse
Affiliation(s)
- Maria Ruiz-Miró
- Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Goltzman D. Emerging roles for calcium-regulating hormones beyond osteolysis. Trends Endocrinol Metab 2010; 21:512-8. [PMID: 20605729 DOI: 10.1016/j.tem.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 01/08/2023]
Abstract
Parathyroid hormone (PTH), the active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], and PTH-related peptide (PTHrP), the mediator of hypercalcemia of malignancy, are all osteolytic hormones. Recent studies have demonstrated that endogenous PTH and PTHrP also exert bone anabolic activity and that PTHrP is a crucial modulator of growth plate development. At least part of these PTHrP functions can be mediated by intracrine effects, involving a unique interplay of cell surface membrane and intracellular signaling. 1,25(OH)2D also exerts bone anabolic effects and, as with PTHrP, acts on multiple extraskeletal tissues. The skeletal functions of these hormones now extend beyond modulating bone resorption, and important extraskeletal activities have been discovered which involve unique local modes of action.
Collapse
Affiliation(s)
- David Goltzman
- Calcium Research Laboratory, Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC H3A1A1, Canada.
| |
Collapse
|
19
|
Nickel W. Pathways of unconventional protein secretion. Curr Opin Biotechnol 2010; 21:621-6. [PMID: 20637599 DOI: 10.1016/j.copbio.2010.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/01/2023]
Abstract
The vast majority of extracellular proteins are secreted by the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, however, numerous exceptions have been identified. Unconventional secretory proteins lack signal peptides and their export from cells is not affected by brefeldin A, an inhibitor of protein transport along the classical secretory pathway. Two general types of unconventional secretion exist. First, export mediated by direct translocation across plasma membranes of cytoplasmic proteins such as fibroblast growth factor 2. Second, export involving intracellular transport intermediates as shown for acyl-CoA binding protein. Here, molecular mechanisms and factors involved in unconventional secretion are discussed with a focus on fibroblast growth factor 2 translocation across plasma membranes and the role of autophagosomes in unconventional secretion of acyl-CoA binding protein.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|