1
|
Gilleron J, Chafik A, Lacas-Gervais S, Tanti JF, Cormont M. Golgi-associated retrograde protein (GARP) complex-dependent endosomes to trans Golgi network retrograde trafficking is controlled by Rab4b. Cell Mol Biol Lett 2024; 29:54. [PMID: 38627612 PMCID: PMC11020649 DOI: 10.1186/s11658-024-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.
Collapse
Affiliation(s)
- Jérôme Gilleron
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France.
| | - Abderrahman Chafik
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, CCMA, Centre Commun de Microscopie Appliquée (CCMA), Nice, France
| | - Jean-François Tanti
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France
| | - Mireille Cormont
- Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France.
| |
Collapse
|
2
|
Cattin-Ortolá J, Kaufman JGG, Gillingham AK, Wagstaff JL, Peak-Chew SY, Stevens TJ, Boulanger J, Owen DJ, Munro S. Cargo selective vesicle tethering: The structural basis for binding of specific cargo proteins by the Golgi tether component TBC1D23. SCIENCE ADVANCES 2024; 10:eadl0608. [PMID: 38552021 PMCID: PMC11093223 DOI: 10.1126/sciadv.adl0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.
Collapse
Affiliation(s)
- Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan G. G. Kaufman
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison K. Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane L. Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tim J. Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
Keller T, Trinks N, Brand J, Trippmacher S, Stahlhut P, Albrecht K, Papastavrou G, Koepsell H, Sauer M, Groll J. Design of Nanohydrogels for Targeted Intracellular Drug Transport to the Trans-Golgi Network. Adv Healthc Mater 2023; 12:e2201794. [PMID: 36739269 PMCID: PMC11469190 DOI: 10.1002/adhm.202201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Indexed: 02/06/2023]
Abstract
Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds. Hereby, biomolecules like the antidiabetic peptide RS1-reg, derived from the regulatory protein RS1 of the Na+ -D-glucose cotransporter SGLT1, can be covalently bound by cysteine residues to the nanogel in a hydrophilic, stabilizing environment. After oral uptake, the acid-stable nanogels protect their loading during gastric passage from proteolytic degradation. Under alkaline conditions in small intestine the nanohydrogels become mucoadhesive, pass the intestinal mucosa and are taken up into small intestinal enterocytes by endocytosis. Using Caco-2 cells as a model for small intestinal enterocytes, by confocal laser scanning microscopy and structured illumination microscopy, the colocalization of fluorescent-labeled RS1-reg with markers of endosomes, lysosomes, and trans-Golgi-network after uptake with polyglycidol-based nanogels formed by precipitation polymerization is demonstrated. This indicates that RS1-reg follows the endosomal pathway. In the following, the design of bespoken nanohydrogels for specific targeting of RS1-reg to its site of action at the trans-Golgi network is described that might also represent a way of targeted transport for other drugs to their targets at the Golgi apparatus.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Nora Trinks
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Brand
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Steffen Trippmacher
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Georg Papastavrou
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Hermann Koepsell
- Institute of Anatomy and Cell BiologyUniversity of WürzburgKoellikerstraße 697070WürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
4
|
Human Cytomegalovirus Manipulates Syntaxin 6 for Successful Trafficking and Subsequent Infection of Monocytes. J Virol 2022; 96:e0081922. [PMID: 35862696 PMCID: PMC9327712 DOI: 10.1128/jvi.00819-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) exhibits a complex host-pathogen interaction with peripheral blood monocytes. We have identified a unique, cell-type specific retrograde-like intracellular trafficking pattern that HCMV utilizes to gain access to the monocyte nucleus and for productive infection. We show that infection of primary human monocytes, epithelial cells, and fibroblasts leads to an increase in the amount of the trafficking protein Syntaxin 6 (Stx6). However, only knockdown (KD) of Stx6 in monocytes inhibited viral trafficking to the trans-Golgi network (TGN), a requisite step for nuclear translocation in monocytes. Conversely, KD of Stx6 in epithelial cells and fibroblasts did not change the kinetics of nuclear translocation and productive infection. Stx6 predominantly functions at the level of the TGN where it facilitates retrograde transport, a trafficking pathway used by only a few cellular proteins and seldom by pathogens. We also newly identify that in monocytes, Stx6 exhibits an irregular vesicular localization rather than being concentrated at the TGN as seen in other cell-types. Lastly, we implicate that viral particles that associate with both Stx6 and EEA1 early in infection are the viral population that successfully traffics to the TGN at later time points and undergo nuclear translocation. Additionally, we show for the first time that HCMV enters the TGN, and that lack of Stx6 prevents viral trafficking to this organelle. We argue that we have identified an essential cell-type specific regulator that controls early steps in efficient productive infection of a cell-type required for viral persistence and disease. IMPORTANCE Human cytomegalovirus (HCMV) infection causes severe and often fatal disease in the immunocompromised. It is one of the leading infectious causes of birth defects and causes severe complications in transplant recipients. By uncovering the unique pathways used by the virus to infect key cells, such as monocytes, responsible for dissemination and persistence, we provide new potential targets for therapeutic intervention.
Collapse
|
5
|
Highland HM, Wojcik GL, Graff M, Nishimura KK, Hodonsky CJ, Baldassari AR, Cote AC, Cheng I, Gignoux CR, Tao R, Li Y, Boerwinkle E, Fornage M, Haessler J, Hindorff LA, Hu Y, Justice AE, Lin BM, Lin D, Stram DO, Haiman CA, Kooperberg C, Le Marchand L, Matise TC, Kenny EE, Carlson CS, Stahl EA, Avery CL, North KE, Ambite JL, Buyske S, Loos RJ, Peters U, Young KL, Bien SA, Huckins LM. Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits. Am J Hum Genet 2022; 109:669-679. [PMID: 35263625 PMCID: PMC9069067 DOI: 10.1016/j.ajhg.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.
Collapse
Affiliation(s)
- Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Katherine K Nishimura
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chani J Hodonsky
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Antoine R Baldassari
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alanna C Cote
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; Brown Foundation Institute for Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jeffrey Haessler
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lucia A Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Yao Hu
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health System, Danville, PA 17822, USA
| | - Bridget M Lin
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Danyu Lin
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Daniel O Stram
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Haiman
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles Kooperberg
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Public Health, University of Washington, Seattle, WA 98195, USA
| | | | - Tara C Matise
- Genetics, Rutgers University, New Brunswick, NJ 08901-8554, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher S Carlson
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Steven Buyske
- Statistics, Rutgers University, New Brunswick, NJ 08901-8554, USA
| | - Ruth J Loos
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ulrike Peters
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stephanie A Bien
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura M Huckins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 14068, USA.
| |
Collapse
|
6
|
Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. Biofactors 2021; 47:964-974. [PMID: 34500494 DOI: 10.1002/biof.1780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
The organelle of eukaryotes is a finely regulated system. Once disturbed, it activates the specific autoregulatory systems, namely, organelle autoregulation. Among which, the Golgi stress response accounts for one. When the abundance and capacity of the Golgi apparatus are insufficient compared with cellular demand, the Golgi stress response is activated to enhance the function of the Golgi apparatus. Although the molecular mechanism of the Golgi stress response has not been well characterized yet, it seems to be an important part of the mammalian stress response. In this review, we discuss the current status of research on the six pathways of the mammalian Golgi stress response (the TFE3, heat shock protein 47, CREB3, E26 transformation specific, proteoglycan, and mucin pathways), which regulate the general function of the Golgi apparatus, anti-apoptosis, pro-apoptosis, proteoglycan glycosylation, and mucin glycosylation, respectively.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
7
|
Eggert S, Gruebl T, Rajender R, Rupp C, Sander B, Heesch A, Zimmermann M, Hoepfner S, Zentgraf H, Kins S. The Rab5 activator RME-6 is required for amyloid precursor protein endocytosis depending on the YTSI motif. Cell Mol Life Sci 2020; 77:5223-5242. [PMID: 32065241 PMCID: PMC7671991 DOI: 10.1007/s00018-020-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis of the amyloid precursor protein (APP) is critical for generation of β-amyloid, aggregating in Alzheimer's disease. APP endocytosis depending on the intracellular NPTY motif is well investigated, whereas involvement of the YTSI (also termed BaSS) motif remains controversial. Here, we show that APP lacking the YTSI motif (ΔYTSI) displays reduced localization to early endosomes and decreased internalization rates, similar to APP ΔNPTY. Additionally, we show that the YTSI-binding protein, PAT1a interacts with the Rab5 activator RME-6, as shown by several independent assays. Interestingly, knockdown of RME-6 decreased APP endocytosis, whereas overexpression increased the same. Similarly, APP ΔNPTY endocytosis was affected by PAT1a and RME-6 overexpression, whereas APP ΔYTSI internalization remained unchanged. Moreover, we could show that RME-6 mediated increase of APP endocytosis can be diminished upon knocking down PAT1a. Together, our data identify RME-6 as a novel player in APP endocytosis, involving the YTSI-binding protein PAT1a.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Tomas Gruebl
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ritu Rajender
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Carsten Rupp
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bianca Sander
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Marius Zimmermann
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Sebastian Hoepfner
- MPI of Molecular Cell Biology and Genetics, Dresden, Germany
- Bird & Bird LLM, Munich, Germany
| | | | - Stefan Kins
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Baba K, Kuwada S, Nakao A, Li X, Okuda N, Nishida A, Mitsuda S, Fukuoka N, Kakeya H, Kataoka T. Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines. Histochem Cell Biol 2020; 153:199-213. [PMID: 31907597 DOI: 10.1007/s00418-019-01842-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Lysosomal-associated membrane protein 1 (LAMP1) mainly localizes to lysosomes and late endosomes. We herein investigated the intracellular localization of lysosomal membrane proteins in five mammalian cultured cell lines. Rat LAMP1 fused to enhanced green fluorescent protein (EGFP) mostly accumulated at a particular cytoplasmic area and barely co-localized with LysoTracker® Red DND-99 in golden hamster kidney BHK-21 cells and Chinese hamster ovary CHO-K1 cells. Golden hamster, Chinese hamster, and human LAMP1-EGFP showed a similar intracellular distribution to rat LAMP1-EGFP in BHK-21 cells. Endogenous LAMP1 was also detected in a perinuclear area in BHK-21 cells and CHO-K1 cells, and co-localized with rat CD63-EGFP in BHK-21 cells. Moreover, rat LAMP1-DsRed-Monomer co-localized well with the human trans-Golgi network protein 2-EGFP in BHK-21 cells. These results reveal that LAMP1 predominantly localizes to the trans-Golgi network in BHK-21 cells.
Collapse
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sara Kuwada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ayaka Nakao
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Xuebing Li
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoaki Okuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Satoshi Mitsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
9
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
10
|
Prokšová PG, Lipov J, Zelenka J, Hunter E, Langerová H, Rumlová M, Ruml T. Mason-Pfizer Monkey Virus Envelope Glycoprotein Cycling and Its Vesicular Co-Transport with Immature Particles. Viruses 2018; 10:E575. [PMID: 30347798 PMCID: PMC6212865 DOI: 10.3390/v10100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
Collapse
Affiliation(s)
- Petra Grznárová Prokšová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
- Imaging methods core facility at BIOCEV, Faculty of Science, Charles University, 252 50 Prague, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Eric Hunter
- Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hana Langerová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| |
Collapse
|
11
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
12
|
MicroRNA 199a-5p Attenuates Retrograde Transport and Protects against Toxin-Induced Inhibition of Protein Biosynthesis. Mol Cell Biol 2018; 38:MCB.00548-17. [PMID: 29555727 DOI: 10.1128/mcb.00548-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Retrograde transport (RT) allows cells to retrieve receptors and other cellular cargoes for delivery to the Golgi apparatus, contributing to the maintenance of cellular homeostasis. This transport route is also commonly used by several bacterial toxins to exert their deleterious actions on eukaryotic cells. While the retrograde transport process has been well characterized, the contribution of microRNAs (miRNAs) in regulating this cellular transport mechanism remains unknown. Here, we determined that mir-199a and mir-199b, members of the intronic miRNA family, coordinate genes regulating RT and endosome trafficking. We demonstrate that miR-199a-5p attenuates the expression of Vps26A, Rab9B, and M6PR, thereby controlling RT from endosomes to the trans-Golgi network (TGN). Importantly, we found that overexpression of a Vps26A construct resistant to the inhibitory action of miR-199a-5p abrogates the effect of miR-199a-5p on RT. Finally, we demonstrate that miR-199-5p overexpression attenuates Shiga toxin type 1 (Stx1)-mediated inhibition of protein biosynthesis. In summary, our work identifies the first noncoding RNA that influences RT and reduces the inhibition of protein biosynthesis caused by bacterial toxins.
Collapse
|
13
|
Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 2018; 16:19. [PMID: 29703230 PMCID: PMC5923015 DOI: 10.1186/s12964-018-0230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Golgin-97 is a tethering factor in the trans-Golgi network (TGN) and is crucial for vesicular trafficking and maintaining cell polarity. However, the significance of golgin-97 in human diseases such as cancer remains unclear. Methods We searched for a potential role of golgin-97 in cancers using Kaplan-Meier Plotter (http://kmplot.com) and Oncomine (www.oncomine.org) datasets. Specific functions of golgin-97 in migration and invasion were examined in golgin-97-knockdown and golgin-97-overexpressing cells. cDNA microarray, pathway analysis and qPCR were used to identify gene profiles regulated by golgin-97. The role of golgin-97 in NF-κB signaling pathway was examined by using subcellular fractionation, luciferase reporter assay, western blot analysis and immunofluorescence assay (IFA). Results We found that low expression of golgin-97 correlated with poor overall survival of cancer patients and was associated with invasiveness in breast cancer cells. Golgin-97 knockdown promoted cell migration and invasion, whereas re-expression of golgin-97 restored the above phenotypes in breast cancer cells. Microarray and pathway analyses revealed that golgin-97 knockdown induced the expression of several invasion-promoting genes that were transcriptionally regulated by NF-κB p65. Mechanistically, golgin-97 knockdown significantly reduced IκBα protein levels and activated NF-κB, whereas neither IκBα levels nor NF-κB activity was changed in TGN46- or GCC185-knockdown cells. Conversely, golgin-97 overexpression suppressed NF-κB activity and restored the levels of IκBα in golgin-97-knockdown cells. Interestingly, the results of Golgi-disturbing agent treatment revealed that the loss of Golgi integrity was not involved in the NF-κB activation induced by golgin-97 knockdown. Moreover, both TGN-bound and cytosolic golgin-97 inhibited NF-κB activation, indicating that golgin-97 functions as an NF-κB suppressor regardless of its subcellular localization. Conclusion Our results collectively demonstrate a novel and suppressive role of golgin-97 in cancer invasiveness. We also provide a new avenue for exploring the relationship between the TGN, golgin-97 and NF-κB signaling in tumor progression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Yan Zhong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Wei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yun Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yu Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA. The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 2018; 131:jcs.211987. [PMID: 29361552 DOI: 10.1242/jcs.211987] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul J McMillan
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Gosavi P, Gleeson PA. The Function of the Golgi Ribbon Structure - An Enduring Mystery Unfolds! Bioessays 2017; 39. [PMID: 28984991 DOI: 10.1002/bies.201700063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The Golgi apparatus in vertebrate cells consists of individual Golgi stacks fused together in a continuous ribbon structure. The ribbon structure per se is not required to mediate the classical functions of this organelle and the relevance of the "ribbon" structure has been a mystery since first identified ultrastructurally in the 1950s. Recent advances recognize a role for the Golgi apparatus in a range of cellular processes, some mediated by signaling networks which are regulated at the Golgi. Here we review the cellular processes and signaling events regulated by the Golgi apparatus and, in particular, explore an emerging theme that the ribbon structure of the Golgi contributes directly to the regulation of these higher order functions.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
16
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
17
|
Lood C, Tydén H, Gullstrand B, Jönsen A, Källberg E, Mörgelin M, Kahn R, Gunnarsson I, Leanderson T, Ivars F, Svenungsson E, Bengtsson AA. Platelet-Derived S100A8/A9 and Cardiovascular Disease in Systemic Lupus Erythematosus. Arthritis Rheumatol 2017; 68:1970-80. [PMID: 26946461 DOI: 10.1002/art.39656] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 02/18/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Levels of S100A8/A9, a proinflammatory and prothrombotic protein complex, are increased in several diseases, and high levels predispose to cardiovascular disease (CVD). Recently, platelet S100A8/A9 synthesis was described in mice and humans in relation to CVD. The aim of this study was to investigate the role of platelet S100A8/A9 in systemic lupus erythematosus (SLE), a disease with markedly increased cardiovascular morbidity, as well as the exact platelet distribution of the S100A8/A9 proteins. METHODS The occurrence and distribution of platelet S100A8/A9 protein were detected by enzyme-linked immunosorbent assay, electron microscopy, Western blotting, and flow cytometry in healthy controls (n = 79) and in 2 individual cohorts of SLE patients (n = 148 and n = 318, respectively) and related to cardiovascular morbidity. RESULTS We observed that human platelets expressed S100A8/A9 proteins, and that these were localized in close proximity to intracellular membranes and granules as well as on the cell surface upon activation with physiologic and pathophysiologic stimuli. Interestingly, S100A8/A9 was enriched at sites of membrane interactions, indicating a role of S100A8/A9 in cell-cell communication. S100A8/A9 levels were highly regulated by interferon-α, both in vivo and in vitro. Patients with SLE had increased platelet S100A8/A9 content compared with healthy individuals. Increased levels of platelet S100A8/A9 were associated with CVD, particularly myocardial infarction (odds ratio 4.8, 95% confidence interval 1.5-14.9, P = 0.032 [adjusted for age, sex, and smoking]). CONCLUSION Platelets contain S100A8/A9 in membrane-enclosed vesicles, enabling rapid cell surface deposition upon activation. Furthermore, platelet S100A8/A9 protein levels were increased in SLE patients, particularly in those with CVD, and may be a future therapeutic target.
Collapse
Affiliation(s)
- Christian Lood
- Lund University and Skåne University Hospital, Lund, Sweden
| | - Helena Tydén
- Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Andreas Jönsen
- Lund University and Skåne University Hospital, Lund, Sweden
| | | | | | | | - Iva Gunnarsson
- Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
19
|
Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, Takatsu H, Shin HW. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell 2016; 27:3883-3893. [PMID: 27733620 PMCID: PMC5170610 DOI: 10.1091/mbc.e16-08-0586] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
ATP9A is localized to phosphatidylserine-positive early and recycling endosomes, but not late endosomes, in HeLa cells. ATP9A plays a crucial role in recycling of transferrin and glucose transporter 1 from endosomes to the plasma membrane. Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Yoshiki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsuki Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Shima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gaku Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Legler PM, Compton JR, Hale ML, Anderson GP, Olson MA, Millard CB, Goldman ER. Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs 2016; 9:43-57. [PMID: 27660893 PMCID: PMC5240650 DOI: 10.1080/19420862.2016.1236882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ricin is an A-B ribosome inactivating protein (RIP) toxin composed of an A-chain subunit (RTA) that contains a catalytic N-glycosidase and a B-chain (RTB) lectin domain that binds cell surface glycans. Ricin exploits retrograde transport to enter into the Golgi and the endoplasmic reticulum, and then dislocates into the cytoplasm where it can reach its substrate, the rRNA. A subset of isolated antibodies (Abs) raised against the RTA subunit protect against ricin intoxication, and RTA-based vaccine immunogens have been shown to provide long-lasting protective immunity against the holotoxin. Anti-RTA Abs are unlikely to cross a membrane and reach the cytoplasm to inhibit the enzymatic activity of the A-chain. Moreover, there is not a strict correlation between the apparent binding affinity (Ka) of anti-RTA Abs and their ability to successfully neutralize ricin toxicity. Some anti-RTA antibodies are toxin-neutralizing, whereas others are not. We hypothesize that neutralizing anti-RTA Abs may interfere selectively with conformational change(s) or partial unfolding required for toxin internalization. To test this hypothesis, we measured the melting temperatures (Tm) of neutralizing single-domain Ab (sdAb)-antigen (Ag) complexes relative to the Tm of the free antigen (Tm-shift = Tmcomplex – TmAg), and observed increases in the Tmcomplex of 9–20 degrees. In contrast, non-neutralizing sdAb-Ag complexes shifted the TmComplex by only 6–7 degrees. A strong linear correlation (r2 = 0.992) was observed between the magnitude of the Tm-shift and the viability of living cells treated with the sdAb and ricin holotoxin. The Tm-shift of the sdAb-Ag complex provided a quantitative biophysical parameter that could be used to predict and rank-order the toxin-neutralizing activities of Abs. We determined the first structure of an sdAb-RTA1-33/44-198 complex, and examined other sdAb-RTA complexes. We found that neutralizing sdAb bound to regions involved in the early stages of unfolding. These Abs likely interfere with steps preceding or following endocytosis that require conformational changes. This method may have utility for the characterization or rapid screening of other Ab that act to prevent conformational changes or unfolding as part of their mechanism of action.
Collapse
Affiliation(s)
| | | | - Martha L Hale
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | | - Mark A Olson
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - Charles B Millard
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | |
Collapse
|
21
|
Roy R, Bassham DC. Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1. FRONTIERS IN PLANT SCIENCE 2015; 6:969. [PMID: 26617617 PMCID: PMC4642138 DOI: 10.3389/fpls.2015.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 05/07/2023]
Abstract
The trans-Golgi network (TGN) is a dynamic organelle that functions as a relay station for receiving endocytosed cargo, directing secretory cargo, and trafficking to the vacuole. TGN-localized SYP41-interacting protein (TNO1) is a large, TGN-localized, coiled-coil protein that associates with the membrane fusion protein SYP41, a target SNARE, and is required for efficient protein trafficking to the vacuole. Here, we show that a tno1 mutant has auxin transport-related defects. Mutant roots have delayed lateral root emergence, decreased gravitropic bending of plant organs and increased sensitivity to the auxin analog 2,4-dichlorophenoxyacetic acid and the natural auxin 3-indoleacetic acid. Auxin asymmetry at the tips of elongating stage II lateral roots was reduced in the tno1 mutant, suggesting a role for TNO1 in cellular auxin transport during lateral root emergence. During gravistimulation, tno1 roots exhibited delayed auxin transport from the columella to the basal epidermal cells. Endocytosis to the TGN was unaffected in the mutant, indicating that bulk endocytic defects are not responsible for the observed phenotypes. Together these studies demonstrate a role for TNO1 in mediating auxin responses during root development and gravistimulation, potentially through trafficking of auxin transport proteins.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Interdepartmental Genetics Program, Iowa State University, AmesIA, USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Interdepartmental Genetics Program, Iowa State University, AmesIA, USA
- Plant Sciences Institute, Iowa State University, AmesIA, USA
- *Correspondence: Diane C. Bassham,
| |
Collapse
|
22
|
Craven CJ. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules. Theor Biol Med Model 2014; 11:40. [PMID: 25218581 PMCID: PMC4237941 DOI: 10.1186/1742-4682-11-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. METHODS A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. RESULTS The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. CONCLUSIONS These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells, and, in turn, their progeny. The presence or absence of a particular receptor for a couplet molecule will define a cell type and the presence or absence of many such receptors will define the cell types of the progeny within cell lineages.
Collapse
Affiliation(s)
- Cyril J Craven
- Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
23
|
Abstract
Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- National Institute of Dental and Craniofacial Research, National Institutes of Health30 Convent Drive, Bethesda, MD 20892-4340USA
| | - Paul A. Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute30 Flemington Road, The University of Melbourne, Victoria 3010Australia
| |
Collapse
|
24
|
Tseng HY, Thorausch N, Ziegler T, Meves A, Fässler R, Böttcher RT. Sorting Nexin 31 Binds Multiple β Integrin Cytoplasmic Domains and Regulates β1 Integrin Surface Levels and Stability. J Mol Biol 2014; 426:3180-3194. [DOI: 10.1016/j.jmb.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
|
25
|
Ong YS, Tran THT, Gounko NV, Hong W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J Cell Sci 2014; 127:2825-39. [PMID: 24806965 PMCID: PMC4077589 DOI: 10.1242/jcs.136754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Searching and evaluating the Human Protein Atlas for transmembrane proteins enabled us to identify an integral membrane protein, TMEM115, that is enriched in the Golgi complex. Biochemical and cell biological analysis suggested that TMEM115 has four candidate transmembrane domains located in the N-terminal region. Both the N- and C-terminal domains are oriented towards the cytoplasm. Immunofluorescence analysis supports that TMEM115 is enriched in the Golgi cisternae. Functionally, TMEM115 knockdown or overexpression delays Brefeldin-A-induced Golgi-to-ER retrograde transport, phenocopying cells with mutations or silencing of the conserved oligomeric Golgi (COG) complex. Co-immunoprecipitation and in vitro binding experiments reveals that TMEM115 interacts with the COG complex, and might self-interact to form dimers or oligomers. A short region (residues 206–229) immediately to the C-terminal side of the fourth transmembrane domain is both necessary and sufficient for Golgi targeting. Knockdown of TMEM115 also reduces the binding of the lectins peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA), suggesting an altered O-linked glycosylation profile. These results establish that TMEM115 is an integral membrane protein of the Golgi stack regulating Golgi-to-ER retrograde transport and is likely to be part of the machinery of the COG complex.
Collapse
Affiliation(s)
- Yan Shan Ong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore IMB-IMCB Joint Electron Microscopy Suite, 20 Biopolis Street, Singapore 138671, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore Department of Biochemistry, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
26
|
Torres IL, Rosa-Ferreira C, Munro S. The Arf family G protein Arl1 is required for secretory granule biogenesis in Drosophila. J Cell Sci 2014; 127:2151-60. [PMID: 24610947 DOI: 10.1242/jcs.122028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.
Collapse
Affiliation(s)
- Isabel L Torres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
27
|
Lukehart J, Highfill C, Kim K. Vps1, a recycling factor for the traffic from early endosome to the late Golgi. Biochem Cell Biol 2013; 91:455-65. [DOI: 10.1139/bcb-2013-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1’s function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.
Collapse
Affiliation(s)
- Joshua Lukehart
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| | - Chad Highfill
- Department of molecular bioscience, University of Kansas, Lawrence, KS 66045, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
28
|
Uchiyama K, Muramatsu N, Yano M, Usui T, Miyata H, Sakaguchi S. Prions disturb post-Golgi trafficking of membrane proteins. Nat Commun 2013; 4:1846. [DOI: 10.1038/ncomms2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/16/2013] [Indexed: 01/26/2023] Open
|
29
|
Farfán P, Lee J, Larios J, Sotelo P, Bu G, Marzolo MP. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic 2013; 14:823-38. [PMID: 23593972 DOI: 10.1111/tra.12076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE.
Collapse
Affiliation(s)
- Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The compartmentalization of cellular functions in complex membranous organelles is a key feature of eukaryotic cells. To cope with the enormous complexity of trafficking pathways that connect these compartments, new approaches need to be considered and introduced into the field of cell biology. We exploit the advantages of the "micropatterning technique," which is to bring cells to adopt a highly reproducible shape, and probabilistic density mapping, which quantifies spatial organization of trafficking compartments, to study regulatory mechanisms of intracellular trafficking. Here, we provide a protocol to analyze and quantify alterations in trafficking compartments upon cellular manipulation. We demonstrate how this approach can be employed to study the regulation of Rab6-labeled transport carriers by the cytoskeleton.
Collapse
|
31
|
McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, Caplan S, Sheff D. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 2012; 13:1140-59. [PMID: 22540229 DOI: 10.1111/j.1600-0854.2012.01374.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/23/2022]
Abstract
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi. Retromer-dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer-dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-mannose-6-phosphate receptor (CI-M6PR), which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CI-M6PR was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the EE, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer-dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.
Collapse
Affiliation(s)
- Jenna E McKenzie
- Howard Hughes Medical Research Institute, Department of Molecular and Cellular Biology, University of California, Berkley, Berkley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
The Golgi apparatus in the endomembrane-rich gastric parietal cells exist as functional stable mini-stacks dispersed throughout the cytoplasm. Biol Cell 2012; 103:559-72. [PMID: 21899517 PMCID: PMC3210445 DOI: 10.1042/bc20110074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background information. Acid-secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+,K+ ATPase-containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane-dense cytoplasm of parietal cells. Results. Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta-nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm. The Golgi membrane structures labelled with markers of both cis- and trans-Golgi membrane, indicating the presence of intact Golgi stacks. The parietal cell Golgi stacks were closely aligned with the microtubule network and were shown to participate in both anterograde and retrograde transport pathways. Dispersed Golgi stacks were also observed in parietal cells from H+,K+ ATPase-deficient mice that lack tubulovesicular membranes. Conclusions. These results indicate that the unusual organization of individual Golgi stacks dispersed throughout the cytoplasm of these terminally differentiated cells is likely to be a developmentally regulated event.
Collapse
|
33
|
Christis C, Munro S. The small G protein Arl1 directs the trans-Golgi-specific targeting of the Arf1 exchange factors BIG1 and BIG2. ACTA ACUST UNITED AC 2012; 196:327-35. [PMID: 22291037 PMCID: PMC3275380 DOI: 10.1083/jcb.201107115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specificity in Arf1 GEF recruitment to the trans-Golgi, and thus in localized Arf1 activation, is provided by an Arf-like G protein. The small G protein Arf1 regulates Golgi traffic and is activated by two related types of guanine nucleotide exchange factor (GEF). GBF1 acts at the cis-Golgi, whereas BIG1 and its close paralog BIG2 act at the trans-Golgi. Peripheral membrane proteins such as these GEFs are often recruited to membranes by small G proteins, but the basis for specific recruitment of Arf GEFs, and hence Arfs, to Golgi membranes is not understood. In this paper, we report a liposome-based affinity purification method to identify effectors for small G proteins of the Arf family. We validate this with the Drosophila melanogaster Arf1 orthologue (Arf79F) and the related class II Arf (Arf102F), which showed a similar pattern of effector binding. Applying the method to the Arf-like G protein Arl1, we found that it binds directly to Sec71, the Drosophila ortholog of BIG1 and BIG2, via an N-terminal region. We show that in mammalian cells, Arl1 is necessary for Golgi recruitment of BIG1 and BIG2 but not GBF1. Thus, Arl1 acts to direct a trans-Golgi–specific Arf1 GEF, and hence active Arf1, to the trans side of the Golgi.
Collapse
Affiliation(s)
- Chantal Christis
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | |
Collapse
|