1
|
Samy A, Yamano-Adachi N, Koga Y, Omasa T. Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells. Traffic 2021; 22:425-438. [PMID: 34536241 PMCID: PMC9293085 DOI: 10.1111/tra.12818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023]
Abstract
GRP94 (glucose‐regulated protein 94) is a well‐studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C‐terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER‐associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.
Collapse
Affiliation(s)
- Andrew Samy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Núñez-Díaz JA, Fumanal M, Mancera JM, Moriñigo MA, Balebona MC. Two routes of infection with Photobacterium damselae subsp. piscicida are effective in the modulation of the transcription of immune related genes in Solea senegalensis. Vet Immunol Immunopathol 2016; 179:8-17. [PMID: 27590420 DOI: 10.1016/j.vetimm.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/04/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
The marine fish pathogen Photobacterium damselae subsp. piscicida (Phdp) is responsible for important disease outbreaks affecting cultured fish species including the flatfish Solea senegalensis. In the present work, transcription of iron metabolism related genes (TF, FERR-M, HP-1 and HAMP-1) as well as innate immune system components such as complement proteins (C3 and C7), lysozyme (LYS-G), TNF family (TNFα, TRAF-3), NCCRP-1 and heat shock protein encoding genes (HSP70, HSP90AA, HSP90AB and GP96) has been determined in the liver and kidney of S. senegalensis specimens after Phdp infection. Intraperitoneal injection (IP) and immersion (IM) routes have been used for infection. Fish developed specific antibodies in both cases, higher levels being detected in IP infected specimens. Both infection routes resulted in increased relative transcript levels of FERR-M, HP-1 and HAMP-1 genes and TF decreased relative transcription, conducting to lower iron availability for the pathogen. This response can be considered as a strategy to limit iron availability for Phdp, a pathogen capable to obtain iron from transferrin. Relative transcription of genes encoding lysozyme and complement factors C3 and C7 were also increased regardless the infection route; the liver was the main organ involved in the initial stages and the kidney in later stages of the infection. TNFα and TRAF-3 relative gene transcription increased 24h post-infection. TRAF-3 gene induction was detected 30 d post-infection, whilst no changes in TNFα were observed 72h or 30 d post-infection. NCCRP-1 changes were observed after IP infection in the liver and kidney; however, IM infection resulted only in slight changes in the kidney of infected fish. This different response observed maybe related to a lower number of invaded cells by the pathogen. Finally, changes in HSP90AB and GP96 have been detected after infection by both routes. Different late modulation has been observed in assayed genes depending on the route of infection. Thus, only LYS-G, TF, NCCRP-1, GP96 and HSP90AB gene transcription was modulated 30 d post-infection in the kidney of IM infected specimens; however, IP infected fish showed modulation in a higher number of genes both in liver and kidney tissues. The implications of these responses in resistance to infection by Phdp need to be elucidated.
Collapse
Affiliation(s)
- J A Núñez-Díaz
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - M Fumanal
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - J M Mancera
- Universidad de Cádiz, Departamento de Biología, Campus de Excelencia Internacional del Mar (CEI-MAR), 11510, Puerto Real, Cádiz, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
3
|
Jiang L, Jiang S, Situ D, Lin Y, Yang H, Li Y, Long H, Zhou Z. Prognostic value of monocyte and neutrophils to lymphocytes ratio in patients with metastatic soft tissue sarcoma. Oncotarget 2016; 6:9542-50. [PMID: 25865224 PMCID: PMC4496237 DOI: 10.18632/oncotarget.3283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Metastatic soft tissue sarcomas (STS) represent enormous challenges to improve the low survival rate, which is almost the same as past 2 decades ago. Prognosis of cancer patients are based not only on tumor-related factors but also on host-related factors, particularly systemic inflammatory response. We evaluated the association among possible risk factors and survival for metastatic STS by reviewed a single-institution nearly 50-year experience. We found that both monocyte ratio and NLR ratio were significant prognostic predictors for OS and PFS of metastatic STS. And patients with monocyte ratio or NLR ratio > 1 should be screened out as candidates for more intensive or aggressive multimodality treatments and more aggressive follow-up. For this reason, this result could serve as a basis for future prospective study.
Collapse
Affiliation(s)
- Long Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,University of California, San Francisco, CA, USA
| | - Shanshan Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Dongrong Situ
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yongbin Lin
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Han Yang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yuanfang Li
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Hao Long
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Zhiwei Zhou
- Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
4
|
Weiss A, Gill J, Goldberg J, Lagmay J, Spraker-Perlman H, Venkatramani R, Reed D. Advances in therapy for pediatric sarcomas. Curr Oncol Rep 2015; 16:395. [PMID: 24894064 DOI: 10.1007/s11912-014-0395-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric sarcomas are relatively rare malignancies individually. As a group they are typically approached with combination chemotherapies in addition to local control. Fortunately, these malignancies have been approached through careful clinical trial collaboration to define risk groups and appropriately deliver local control measures and systemic therapies. Although local disease is typically approached with curative intent, therapy typically lasts over 6 months and has significant associated morbidities. It is more difficult to cure metastatic disease or induce sustained remissions. In this article, we discuss recent advances in the understanding of the disease process and highlight recent and future cooperative group trials in osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, nonrhabdomyosarcoma soft tissue sarcomas, and desmoid tumor as well as discuss promising therapeutic approaches such as epigenetics and immunotherapy.
Collapse
Affiliation(s)
- Aaron Weiss
- Division of Pediatric Hematology-Oncology, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA,
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Zhang L, Wang S, Wu D, Yang W. Decreased functional expression of Grp78 and Grp94 inhibits proliferation and attenuates apoptosis in a human gastric cancer cell line in vitro.. Oncol Lett 2014; 9:1181-1186. [PMID: 25663878 PMCID: PMC4315086 DOI: 10.3892/ol.2014.2831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/27/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the effect of downregulating the expression of glucose-regulated protein 78 (Grp78) and Grp94 upon the rate of proliferation and apoptosis in the human gastric cancer SGC-7901 cell line. The SGC-7901 cells were divided into three groups as follows: i) An experimental group co-transfected with the small interfering RNA vectors, psiSTRIKE™/Grp78 and psiSTRIKE/Grp94; ii) a negative control group, in which only Lipofectamine 2000™ was used to transfect the cells; and iii) a blank control group, in which cells were left untouched and not transfected with any agent. The transcriptional expression of Grp78 and Grp94 was assayed by reverse transcription polymerase chain reaction, and the protein expression of Grp78 and Grp94 was determined using an immunofluorescence assay at 24, 48 and 72 h post-transfection. The rates of cellular proliferation and apoptosis were assayed using MTT and flow cytometry analyses, respectively. The mRNA and protein expression of Grp78 and Grp94 in the gastric cancer cells was downregulated at 72 h post-transfection. In addition, the results of the MTT assay revealed that the proliferation rate of the gastric cancer cells in the co-transfected group was significantly inhibited at 72 h post-transfection compared with the control groups (P<0.05). The apoptosis ratio was significantly increased in the experimental group compared with the control groups (P<0.05). The co-transfection of the SGC-7901 cells with psiSTRIKE/Grp78 and psiSTRIKE/Grp94 markedly reduced the expression of Grp78 and Grp94, respectively. Furthermore, the reduction in the expression of Grp78 and Grp94 inhibited cellular proliferation and significantly downregulated the rate of apoptosis in the SGC-7901 cells in vitro.
Collapse
Affiliation(s)
- Xinchen Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shu Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dequan Wu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiliang Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
6
|
Induction of boosted immune response in mice by leptospiral surface proteins expressed in fusion with DnaK. BIOMED RESEARCH INTERNATIONAL 2014; 2014:564285. [PMID: 25110682 PMCID: PMC4109591 DOI: 10.1155/2014/564285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/06/2014] [Indexed: 11/17/2022]
Abstract
Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21), rLIC10494, rLIC12690 (Lp95), and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.
Collapse
|
7
|
Strbo N, Garcia-Soto A, Schreiber TH, Podack ER. Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. Immunol Res 2013; 57:311-25. [PMID: 24254084 DOI: 10.1007/s12026-013-8468-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, our laboratory has developed a secreted heat shock protein (HSP), chaperone gp96, cell-based vaccine that generates effective anti-tumor and anti-infectious immunity in vivo. Gp96-peptide complexes were identified as an extremely efficient stimulator of MHC I-mediated antigen cross-presentation, generating CD8 cytotoxic T-lymphocyte responses detectable in blood, spleen, gut and reproductive tract to femto-molar concentrations of antigen. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce both systemic and mucosal immunity. This approach takes advantage of the combined adjuvant and antigen delivery capacity of gp96 for the generation of cytotoxic immunity against a wide range of antigens in both anti-vial and anti-cancer vaccination. Here, we review the vaccine design that utilizes the unique property/ability of endoplasmic HSP gp96 to bind antigenic peptides and deliver them to antigen-presenting cells.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3008, 1600 NW 10th Ave, Miami, FL, 33136, USA,
| | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To describe the current advances in immunotherapy and how they can be applied to sarcoma. This review will discuss the recent literature and selected clinical trials. Evidence supporting treatment with immunotherapy alone in sarcoma will be reviewed, as will the potential incorporation of immunotherapy into treatment for sarcoma. RECENT FINDINGS Sarcoma, cancer of the connective tissues, frequently strikes young people, comprising a large percentage of cancer in children and young adults, but may occur at any age. Although molecularly targeted inhibitors are of great interest in treating sarcoma patients, immunotherapy is emerging as a plausible therapeutic modality because of the recent advances in other cancer types that may be translated to sarcoma. The licensing of ipilimumab and sipuleucel-T for cancer, and the remarkable success of immunotherapy for some childhood cancers, suggest a role for immunotherapy in the treatment of tumors like sarcoma. SUMMARY Sarcoma is a disease for which new treatments are needed. Immunotherapies have different mechanisms of action from most current therapies and could work in concert with them. Recent advances in sarcoma biology and cancer immunotherapy suggest that our knowledge of the immune system has reached the point where it can be used to augment both targeted and multimodality therapy for sarcoma.
Collapse
Affiliation(s)
- John M Goldberg
- Department of Pediatrics, University of Miami Miller School of Medicine, University of Miami, Miami, Florida, USA.
| |
Collapse
|
9
|
Mosenson JA, Eby JM, Hernandez C, Le Poole IC. A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol 2013; 22:566-9. [PMID: 23786523 DOI: 10.1111/exd.12183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Inducible heat-shock protein 70 (HSP70i) is a protein regulated by stress that protects cells from undergoing apoptosis. Such proteins are marvellously well conserved throughout evolution, which has placed them in the spotlight for helping to understand the intriguing relationship between infection and immunity. In the presence of stress proteins, dendritic cells (DCs) will sense this alarm signal and respond by recruiting immune cells of different plumage to fit the occasion. In times of stress, melanocytes will secrete antigen-bound HSP70i to act as an alarm signal in activating DCs that comes equipped with an address of origin to drive the autoimmune response in vitiligo. Here we pose that if the autoimmune response is funnelled through HSP70i, then blocking the stress protein from activating DCs can lend new treatment opportunities for vitiligo.
Collapse
Affiliation(s)
- Jeffrey A Mosenson
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
10
|
The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2012; 32:805-18. [PMID: 22508478 DOI: 10.1038/onc.2012.130] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer progression is characterized by rapidly proliferating cancer cells that are in need of increased protein synthesis. Therefore, enhanced endoplasmic reticulum (ER) activity is required to facilitate the folding, assembly and transportation of membrane and secretory proteins. These functions are carried out by ER chaperones. It is now becoming clear that the ER chaperones have critical functions outside of simply facilitating protein folding. For example, cancer progression requires glucose regulated protein (GRP) 78 for cancer cell survival and proliferation, as well as angiogenesis in the microenvironment. GRP78 can translocate to the cell surface acting as a receptor regulating oncogenic signaling and cell viability. Calreticulin, another ER chaperone, can translocate to the cell surface of apoptotic cancer cells and induce immunogenic cancer cell death and antitumor responses in vivo. Tumor-secreted GRP94 has been shown to elicit antitumor immune responses when used as antitumor vaccines. Protein disulfide isomerase is another ER chaperone that demonstrates pro-oncogenic and pro-survival functions. Because of intrinsic alterations of cellular metabolism and extrinsic factors in the tumor microenvironment, cancer cells are under ER stress, and they respond to this stress by activating the unfolded protein response (UPR). Depending on the severity and duration of ER stress, the signaling branches of the UPR can activate adaptive and pro-survival signals, or induce apoptotic cell death. The protein kinase RNA-like ER kinase signaling branch of the UPR has a dual role in cancer proliferation and survival, and is also required for ER stress-induced autophagy. The activation of the inositol-requiring kinase 1α branch promotes tumorigenesis, cancer cell survival and regulates tumor invasion. In summary, perturbance of ER homeostasis has critical roles in tumorigenesis, and therapeutic modulation of ER chaperones and/or UPR components presents potential antitumor treatments.
Collapse
|
11
|
Tsuji T, Matsuzaki J, Caballero OL, Jungbluth AA, Ritter G, Odunsi K, Old LJ, Gnjatic S. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3851-8. [PMID: 22427632 DOI: 10.4049/jimmunol.1103269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang YD, Cao S, Meng SD, Gao GF. A strategy to produce monoclonal antibodies against gp96 by prime-boost regimen using endogenous protein and E. coli heterologously-expressed fragment. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11771-011-0914-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Mosenson JA, Zloza A, Klarquist J, Barfuss AJ, Guevara-Patino JA, Poole ICL. HSP70i is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res 2011; 25:88-98. [PMID: 21978301 DOI: 10.1111/j.1755-148x.2011.00916.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HSP70i and other stress proteins have been used in anti-tumor vaccines. This begs the question whether HSP70i plays a unique role in immune activation. We vaccinated inducible HSP70i (Hsp70-1) knockout mice and wild-type animals with optimized TRP-1, a highly immunogenic melanosomal target molecule. We were unable to induce robust and lasting depigmentation in the Hsp70-1 knockout mice, and in vivo cytolytic assays revealed a lack of cytotoxic T-lymphocyte activity. Absence of T-cell infiltration to the skin and maintenance of hair follicle melanocytes were observed. By contrast, depigmentation proceeded without interruption in mice lacking a tissue-specific constitutive isoform of HSP70 (Hsp70-2) vaccinated with TRP-2. Next, we demonstrated that HSP70i was necessary and sufficient to accelerate depigmentation in vitiligo-prone Pmel-1 mice, accompanied by lasting phenotypic changes in dendritic cell subpopulations. In summary, these studies assign a unique function to HSP70i in vitiligo and identify HSP70i as a targetable entity for treatment.
Collapse
Affiliation(s)
- Jeffrey A Mosenson
- Department of Pathology, Microbiology & Immunology, Oncology Institute, Loyola University, Maywood, IL, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Glioblastoma multiforme is the most common primary central nervous system tumor. The prognosis for these malignant brain tumors is poor, with a median survival of 14 months and a 5-year survival rate below 2%. Development of novel treatments is essential to improving survival and quality of life for these patients. Endogenous heat shock proteins have been implicated in mediation of both adaptive and innate immunity, and there is a rising interest in the use of this safe and multifaceted heat shock protein vaccine therapy as a promising treatment for human cancers, including glioblastoma multiforme.
Collapse
Affiliation(s)
- Isaac Yang
- Department of Neurological Surgery, University of California at San Francisco, 505 Parnassus Avenue, Room M779, Campus 0112, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
15
|
A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity. Vaccine 2009; 28:561-70. [PMID: 19835823 DOI: 10.1016/j.vaccine.2009.09.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.
Collapse
|
16
|
Osuna-Jiménez I, Williams TD, Prieto-Alamo MJ, Abril N, Chipman JK, Pueyo C. Immune- and stress-related transcriptomic responses of Solea senegalensis stimulated with lipopolysaccharide and copper sulphate using heterologous cDNA microarrays. FISH & SHELLFISH IMMUNOLOGY 2009; 26:699-706. [PMID: 19264136 DOI: 10.1016/j.fsi.2009.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/09/2009] [Accepted: 02/21/2009] [Indexed: 05/27/2023]
Abstract
The sole, Solea senegalensis, is a common flatfish of Atlantic and Mediterranean waters with a high potential for aquaculture. However, its cultivation is hampered by high sensitivity to different stresses and several infectious diseases. Improving protection from pathogens and stressors is thus a key step in reaching a standardized production. Fish were exposed to lipopolysaccharide (LPS), a mimetic of bacterial infections, and copper sulphate (CuSO(4)), used in aquaculture to control algae and outbreaks of infectious diseases. We employed a European flounder cDNA microarray to determine the transcriptomic responses of Senegalese sole to these exposures. Microarray analyses showed that many genes were altered in expression following both LPS and copper treatments in comparison to vehicle controls. Gene ontology analysis highlighted copper-specific induction of genes related to cellular adhesion and cell signalling, LPS-specific induction of genes related to the immune response, and a common induction of genes related to unfolded protein binding, intracellular transport/secretion and proteasome. Additionally transcripts for glutathione-S-transferases were down-regulated by LPS, and those for digestive enzymes were down-regulated by both treatments. We selected nine changing genes for absolute quantification of transcript copy numbers by real-time RT-PCR to validate microarray differential expression and to assess inter-individual variability in individual fishes. The quantitative RT-PCR data correlated highly with the microarray results. Overall, data reported provide novel insights into the molecular pathways that could mediate the immune and heavy metal stress responses in Senegalese sole and thus might have biotechnological applications in the culture of this important fish species.
Collapse
|