1
|
Andrade FDO, Liu F, Zhang X, Rosim MP, Dani C, Cruz I, Wang TTY, Helferich W, Li RW, Hilakivi-Clarke L. Genistein Reduces the Risk of Local Mammary Cancer Recurrence and Ameliorates Alterations in the Gut Microbiota in the Offspring of Obese Dams. Nutrients 2021; 13:nu13010201. [PMID: 33440675 PMCID: PMC7827465 DOI: 10.3390/nu13010201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The risk of recurrence of estrogen receptor-positive breast cancer remains constant, even 20 years after diagnosis. Recurrence may be more likely in patients pre-programmed for it already in the womb, such as in the daughters born to obese mothers. Maternal obesity persistently alters offspring’s gut microbiota and impairs tumor immune responses. To investigate if the gut dysbiosis is linked to increased risk of mammary cancer recurrence in the offspring of obese rat dams, we fed adult offspring genistein which is known to have beneficial effects on the gut bacteria. However, the effects of genistein on breast cancer remain controversial. We found that genistein intake after tamoxifen response prevented the increased risk of local recurrence in the offspring of obese dams but had no effect on the control offspring. A significant increase in the abundance of inflammatory Prevotellaceae and Enterobacteriaceae, and a reduction in short-chain fatty acid producing Clostridiaceae was observed in the offspring of obese dams. Genistein supplementation reversed these changes as well as reversed increased gut metabolite N-acetylvaline levels which are linked to increased all-cause mortality. Genistein supplementation also reduced genotoxic tyramine levels, increased metabolites improving pro-resolving phase of inflammation, and reversed the elevated tumor mRNA expression of multiple immunosuppressive genes in the offspring of obese dams. If translatable to breast cancer patients, attempts to prevent breast cancer recurrences might need to focus on dietary modifications which beneficially modify the gut microbiota.
Collapse
Affiliation(s)
- Fabia de Oliveira Andrade
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266555, China;
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Mariana Papaleo Rosim
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Caroline Dani
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Thomas T. Y. Wang
- United States Department of Agriculture, Beltsville Human Nutrition Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA;
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 1801, USA;
| | - Robert W. Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA;
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
- Correspondence:
| |
Collapse
|
2
|
Moreira AC, Silva AM, Santos MS, Sardão VA. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J Steroid Biochem Mol Biol 2014; 143:61-71. [PMID: 24583026 DOI: 10.1016/j.jsbmb.2014.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/03/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Abstract
Menopause is characterized by an altered hormonal status and by a decrease in life quality due to the appearance of uncomfortable symptoms. Nowadays, with increasing life span, women spend one-third of their lifetime under menopause. Understanding menopause-associated pathophysiology and developing new strategies to improve the treatment of menopausal-associated symptoms is an important topic in the clinic. This review describes physiological and hormone alterations observed during menopause and therapeutic strategies used during this period. We critically address the benefits and doubts associated with estrogen/progesterone-based hormone replacement therapy (HRT) and discuss the use of phytoestrogens (PEs) as a possible alternative. These relevant plant-derived compounds have structural similarities to estradiol, interacting with cell proteins and organelles, presenting several advantages and disadvantages versus traditional HRT in the context of menopause. However, a better assessment of PEs safety/efficacy would warrant a possible widespread clinical use.
Collapse
Affiliation(s)
- Ana C Moreira
- Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Tanaka K, Ohgo Y, Katayanagi Y, Yasui K, Hiramoto S, Ikemoto H, Nakata Y, Miyoshi N, Isemura M, Ohashi N, Imai S. Anti-inflammatory effects of green soybean extract irradiated with visible light. Sci Rep 2014; 4:4732. [PMID: 24751752 PMCID: PMC3994445 DOI: 10.1038/srep04732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
We conducted a preliminary investigation of the effects of visible light irradiation on plant extracts, and we observed a strong suppressive effect on interleukin (IL) 2 expression with the inhibition of c-Jun amino-terminal kinase (JNK) phosphorylation in Jurkat cells by visible light irradiation to ethanol extract from green soybeans (LIEGS). This effect was produced only by extracts from green soybeans (Glycine max) and not other-color soybeans. LIEGS suppressed the lipopolysaccharide-induced IL-6, IL-12 and TNF-α expression levels in human monocyte THP-1 cells in a concentration-dependent manner. LIEGS was applied for 8 weeks to NC/Nga mice. LIEGS suppressed the development of atopic dermatitis (AD)-like skin lesions and reduced the dermatitis scores of the mice. The light irradiation changed the various types of small-molecule compounds in extracts. Visible light irradiation to daidzein with chlorophyll b induced a novel oxidative product of daidzein. This product suppressed IL-2 expression in Jurkat cells.
Collapse
Affiliation(s)
- Keiko Tanaka
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
- These authors contributed equally to this work
| | - Yasushi Ohgo
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
- These authors contributed equally to this work
| | - Yuki Katayanagi
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
| | - Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
| | - Shigeru Hiramoto
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
| | - Hiroyuki Ikemoto
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama, 356-8511 Japan
| | - Yumi Nakata
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Mamoru Isemura
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Norio Ohashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Shinjiro Imai
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
4
|
|