1
|
Yao W, Chen X, Cui X, Zhou B, Zhao B, Lin Z, Miao J. Esterase D interacts with metallothionein 2A and inhibits the migration of A549 lung cancer cells in vitro. J Cell Biochem 2023; 124:373-381. [PMID: 36649442 DOI: 10.1002/jcb.30371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.
Collapse
Affiliation(s)
- Wen Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, People's Republic of China
| | - Xinpeng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, People's Republic of China
- Hubei Key laboratory of Edible Wild Plants Conservation & Utilization, School of Life Science, National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, People's Republic of China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, People's Republic of China
| | - Bangzhao Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, People's Republic of China
| | - Baoxiang Zhao
- School of Chemistry and Chemical Engineering, Institute of Organic Chemistry, Shandong University, Jinan, People's Republic of China
| | - ZhaoMin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Chaberek K, Mrowiec M, Kaczmarek M, Dutsch-Wicherek M. The Creation of the Suppressive Cancer Microenvironment in Patients with HPV-Positive Cervical Cancer. Diagnostics (Basel) 2022; 12:diagnostics12081906. [PMID: 36010256 PMCID: PMC9406692 DOI: 10.3390/diagnostics12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The development of malignancy is closely connected with the process of cancer microenvironment remodeling. As a malignancy develops, it stimulates the creation of the suppressive microenvironment of the tumor through the presence of cells that express membrane proteins. These proteins are secreted into the cancer microenvironment, where they enable tumor growth. In patients with cancer of the cervix, the development of the disease is also linked to high-risk HPV (hr-HPV) infection. Such infections are common, and most clear spontaneously; however, a small percentage of these infections can persist and progress into precancerous cervical intraepithelial neoplasia and invasive cervical carcinoma. Consequently, it is assumed that the presence of hr-HPV infection alone is not sufficient for the development of cancer. However, chronic HPV infection is associated with the induction of the remodeling of the microenvironment of the epithelium. Furthermore, the local microenvironment is recognized as a cofactor that participates in the persistence of the HPV infection and disease progression. This review presents the selected immune evasion mechanisms responsible for the persistence of HPV infection, beginning with the delay in the virus replication process prior to the maturation of keratinocytes, the shift to the suppressive microenvironment by a change in keratinocyte immunomodulating properties, the alteration of the Th1/Th2 polarization of the immune response in the microenvironment, and, finally, the role of HLA-G antigen expression.
Collapse
Affiliation(s)
- Katarzyna Chaberek
- 2nd Department of Obstetrics and Gynaecology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Martyna Mrowiec
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Center of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
- Correspondence:
| |
Collapse
|
3
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
4
|
Mäurer M, Pachmann K, Wendt T, Schott D, Wittig A. Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radiotherapy of Breast Cancer Patients. ACTA ACUST UNITED AC 2021; 28:3507-3524. [PMID: 34590615 PMCID: PMC8482075 DOI: 10.3390/curroncol28050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer is being intensively investigated. Here, the reliability of single cell expression analyses in isolated and collected CETC from whole blood samples of patients with early-stage breast cancer before and after radiotherapy (RT) using the maintrac® method was investigated. Single-cell expression analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG, Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC number at the end of the radiotherapy series was higher than before. The majority of genes analyzed showed increased expression after completion of radiotherapy compared to baseline. Procedures and methods used in this pilot study proved to be feasible. The method is suitable for further investigation of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and possibly the development of radiation resistance.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
- Correspondence:
| | - Katharina Pachmann
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| | - Dorothea Schott
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| |
Collapse
|
5
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
6
|
Irani S, Dehghan A. The Expression and Functional Significance of Vascular Endothelial-Cadherin, CD44, and Vimentin in Oral Squamous Cell Carcinoma. J Int Soc Prev Community Dent 2018; 8:110-117. [PMID: 29780735 PMCID: PMC5946518 DOI: 10.4103/jispcd.jispcd_408_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/15/2018] [Indexed: 01/29/2023] Open
Abstract
Objectives Ninety percent of head and neck cancers are squamous cell carcinoma which develops in the oral cavity. Metastasis is the main causative factor for death in 90% of all cancer-related deaths and begins with the invasion of tumor cells through the walls of small blood vessels or lymph vessels. A growing body of evidence has shown that vasculogenic mimicry (VM) facilitates tumor growth and cancer metastasis. The current study aimed to present the role of vascular endothelial (VE)-cadherin, CD44, and vimentin in inducing VM and epithelial-mesenchymal transition (EMT) and to identify the cancer stem cell (CSC) niche in different grades of oral squamous cell carcinoma (OSCC). Materials and Methods A total of 63 OSCC samples (21 samples each grade) were collected from the archive of Pathology Department of Besat educational hospital, Hamadan, Iran, from 2000 to 2015. VE-cadherin, CD44, and vimentin/periodic acid-Schiff (PAS) double-staining were used to validate VM. VM was identified by the detection of PAS-positive loops surrounded by tumor cells. Chi-square test was used to examine the differences between the variables. Significant level was set at 0.05. Pearson's correlation was used to assess the co-localization of the markers. Results There were statistically significant differences between tumor grade and the expression levels of VE-cadherin, CD44, and vimentin (P = 0.000). In addition, significant differences were found between tumor grade and microvessel density (P = 0.000) and between tumor grade and VM (P = 0.000). Conclusion Our results may disclose a definite relationship between VE-cadherin, CD44 and vimentin expression levels, VM formation, EMT, CSCs, and microvessel count in OSCC samples. For this reason, it is suggested that VE-cadherin, CD44, and vimentin are related to angiogenesis and VM formation in OSCC, therefore, in tumor progression and metastasis. Recently, antitumor angiogenic therapies have been challenged. The presence of VM may explain the failure of antiangiogenic treatments.
Collapse
Affiliation(s)
- Soussan Irani
- Department of Oral Pathology, Dental Research Centre, Research Centre for Molecular Medicine, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Dehghan
- Department of Pathology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Ostalska-Nowicka D, Mackowiak-Lewandowicz K, Konwerska A, Zachwieja J. Early Progression of Xanthogranulomatous Pyelonephritis in Children Might Be Dependent on Vimentin Expression. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1066-1072. [PMID: 28978905 PMCID: PMC5637626 DOI: 10.12659/ajcr.904376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Xanthogranulomatous pyelonephritis (XP) is an extremely rare, severe, atypical form of chronic renal parenchymal inflammation accompanied by hydronephrosis and/or urolithiasis. The pathomechanism of XP is not yet fully understood. Microscopically, XP is indicated by the presence of multinucleated giant cells and lipid-laden macrophages, as well as inflammatory infiltration and intensive renal fibrosis. The lipid accumulation in kidney parenchyma may be secondary to the altered flow of low-density lipoprotein (LDL)-derived cholesterol particles inside the affected cells. Physiologically, the process of LDL-derived cholesterol transport from lysosomes to the sites of its esterification is dependent on vimentin, which is a molecule comprising the cytoskeleton in mesenchymal cells. CASE REPORT A 7-year old girl was hospitalized because of the finding of unexplained kidney lesions on an abdominal ultrasound examination (an enlarged and deformed collecting system of the right kidney with hyperechogenic, solid, staghorn lesions in the calyces). Three months earlier, the patient had experienced recurrent urinary tract infection. Based on the subsequent laboratory and imaging diagnostics, the final diagnosis of XP was established and the girl was qualified for right-sided nephrectomy Microscopic examination revealed numerous foci of granuloma formations with no evident exponents of dysplastic or neoplastic abnormalities. Significant CD68-positive cell infiltrations and scattered foam cells arranging the numerous foci of granuloma inflammation were noticed. Renal parenchyma, adjacent to granuloma lesions, presented a vimentin expression. CONCLUSIONS Vimentin expression in XP may confirm a focal character of chronic granuloma formation and may suggest the complexity of XP pathogenesis involving not only macrophage and fibroblast activation but also local lipid deregulation and fibrosis.
Collapse
Affiliation(s)
- Danuta Ostalska-Nowicka
- Department of Pediatric Cardiology, Nephrology and Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Aneta Konwerska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jacek Zachwieja
- Department of Pediatric Cardiology, Nephrology and Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 2016; 796:190-206. [PMID: 27916556 DOI: 10.1016/j.ejphar.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a large family of small and highly conserved non-coding RNAs, regulate gene expression through translational repression or mRNA degradation. Aberrant expression of miRNAs underlies a spectrum of diseases including organ fibrosis. Recent evidence suggests that miRNAs contribute to organ fibrosis through mediating epithelial-mesenchymal transition (EMT). Alleviation of EMT has been proposed as a promising strategy against fibrotic diseases given the key role of EMT in fibrosis. miRNAs impact the expression of specific ligands, receptors, and signaling pathways, thus modulating EMT and consequently influencing fibrosis. This review summarizes the current knowledge concerning how miRNAs regulate EMT and highlights the specific roles that miRNAs-regulated EMT plays in fibrotic diseases as diverse as pulmonary fibrosis, hepatic fibrosis, renal fibrosis and cardiac fibrosis. It is desirable that a more comprehensive understanding of the functions of miRNAs-regulated EMT will facilitate the development of novel diagnostic and therapeutic strategies for various debilitating organ fibrosis.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
9
|
da Cunha IW, Souza MJL, da Costa WH, Amâncio AM, Fonseca FP, Zequi SDC, Lopes A, Guimarães GC, Soares F. Epithelial-mesenchymal transition (EMT) phenotype at invasion front of squamous cell carcinoma of the penis influences oncological outcomes. Urol Oncol 2016; 34:433.e19-26. [PMID: 27381894 DOI: 10.1016/j.urolonc.2016.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Our aims were to evaluate epithelial-mesenchymal transition (EMT) as a useful prognostic marker in penile carcinoma (PC), and establish an objective criterion to define EMT in PC specimens. MATERIALS AND METHODS A total of 149 consecutive cases surgically treated for PC were retrospectively selected. E-cadherin (E-CAD) and vimentin immunohistochemical expressions were evaluated. A combined analysis was performed using both markers to determine EMT status. To establish a normal control to E-CAD expression, we included 14 cases from circumcisions from patients without any neoplastic disease and 77 cases of tumor-free margins. The analyses of tumor samples were evaluated in 2 different areas of the tumor. The first one was in the tumor core. The second analyses were performed on the deepest infiltrative edge of the tumor, nominated invasion front. Cases were classified into EMT absent group, partial EMT group and complete EMT group. Overall survival (OS) and cancer-specific survival (CSS) were analyzed. Kaplan-Meier curves and the log-rank test were used. Cox proportional hazards model was used to determine which variables influenced survival. RESULTS Tumor specimens presented a significant loss of expression of E-CAD when compared with normal epithelium. Vimentin expression in more than 10% of tumor cells was observed in 50 cases. EMT status was associated with histologic grade, pattern of invasion, lymph node metastasis, and perineural and vascular invasion. Further, 10-year OS and CSS rates in patients with presence and absence of complete EMT status were 38.0% and 55.6%; and 48.0% and 91.9%, respectively. EMT status significantly affected CSS and OS rates even after patients were grouped based on lymph node involvement status. The presence of complete EMT status was associated with both CSS and OS rates. Patients in the complete EMT group had a higher risk of death from cancer (hazard ratio = 7.6, P<0.001) and overall death (hazard ratio = 3.0, P<0.001). CONCLUSION Our study represents an evidence of the prognostic effect of EMT in PC. We encourage the study of EMT markers in other centers to validate our findings and confirm its importance in such tumors.
Collapse
Affiliation(s)
| | | | | | - Alice M Amâncio
- Urology Division, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | | | | - Ademar Lopes
- Urology Division, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | | - Fernando Soares
- Urology Division, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| |
Collapse
|
10
|
Li XJ, Wang YS, Yang SY, Tang X, Liu L, Zhou B, Wang XF, Zhu YF, Huang YQ, He SZ. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Diagnostic value of soluble receptor-binding cancer antigen expressed on SiSo cells and carcinoembryonic antigen in differentiating malignant from benign pleural effusion. Tumour Biol 2015; 37:3257-64. [DOI: 10.1007/s13277-015-4174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023] Open
|
12
|
Gao YS, Zhu XF, Yang TT, Xu JK, Lu LM, Zhang KX. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1537-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kazmierczak W, Lazar A, Tomaszewska R, Popiela TJ, Koper K, Wicherek L, Dutsch-Wicherek M. Analysis of the intensity of immune cell infiltration and immunoreactivity of RCAS1 in diffuse large B-cell lymphoma of the palatine tonsil and its microenvironment. Cell Tissue Res 2015; 361:823-31. [PMID: 25773455 PMCID: PMC4550658 DOI: 10.1007/s00441-015-2157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Non-Hodgkin lymphoma of Waldeyer's ring constitutes a small percentage of cases of palatine tonsil malignancies and its precise etiology remains unknown. RCAS1 (receptor cancer-binding antigen expressed on SiSo cells) has been demonstrated to be associated with poor prognosis, the development of lymph node metastases and participation in tumor microenvironment remodeling. Our aim is to analyze the potential role of RCAS1 expression in the tumor and tumor microenvironment in the development of early-stage palatine tonsil B-cell lymphomas. We selected 20 patients and analyzed tissue samples from the lymphoma and tumor microenvironment of each patient and from a reference group of 20 patients with chronic tonsillitis. The presence of RCAS1 protein immunoreactivity was demonstrated in 65% of the examined tissue samples of diffuse large B-cell lymphoma and in 25% of the analyzed stromata in which it was exhibited by CD68-positive cells identified as macrophages and dispersed throughout the stroma. RCAS1 immunoreactivity in the lymphoma tissue samples remained at a level comparable with that of the reference and was significantly higher in these samples than in those from the stroma. Chronic inflammation of the palatine tonsils thus results in intensive infiltration by various types of immune system cells and in excessive RCAS1 immunoreactivity, both of which confirm the important regulatory role of RCAS1 in the immune response in the mucosa-associated lymphatic tissue of Waldeyer's ring. RCAS1 seems to be involved in creating tumor-induced inflammation in the tumor and its microenvironment.
Collapse
Affiliation(s)
- W Kazmierczak
- Department of Otolaryngology and Oncological Laryngology with Subdivision of Audiology and Phoniatry, Jurasz's University Hospital, Bydgoszcz, Poland
| | | | | | | | | | | | | |
Collapse
|
14
|
Okon IS, Coughlan KA, Zhang M, Wang Q, Zou MH. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem 2015; 290:9101-10. [PMID: 25681445 DOI: 10.1074/jbc.m114.631580] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/15/2022] Open
Abstract
Therapeutic benefits offered by tyrosine kinase inhibitors (TKIs), such as gefitinib (Iressa) and erlotinib (Tarceva), are limited due to the development of resistance, which contributes to treatment failure and cancer-related mortality. The aim of this study was to elucidate mechanistic insight into cellular perturbations that accompany acquired gefitinib resistance in lung cancer cells. Several lung adenocarcinoma (LAD) cell lines were screened to characterize epidermal growth factor receptor (EGFR) expression and mutation profile. To circumvent intrinsic variations between cell lines with respect to response to drug treatments, we generated gefitinib-resistant H1650 clone by long-term, chronic culture under gefitinib selection of parental cell line. Isogenic cells were analyzed by microarray, Western blot, flow cytometry, and confocal and transmission electron microscope. We observed that although chronic gefitinib treatment provided effective action against its primary target (aberrant EGFR activity), secondary effects resulted in increased cellular reactive oxygen species (ROS). Gefitinib-mediated ROS correlated with epithelial-mesenchymal transition, as well as striking perturbation of mitochondrial morphology and function. However, gefitinib treatment in the presence of ROS scavenger provided a partial rescue of mitochondrial aberrations. Furthermore, withdrawal of gefitinib from previously resistant clones correlated with normalized expression of epithelial-mesenchymal transition genes. These findings demonstrate that chronic gefitinib treatment promotes ROS and mitochondrial dysfunction in lung cancer cells. Antioxidants may alleviate ROS-mediated resistance.
Collapse
Affiliation(s)
| | | | - Miao Zhang
- From the Section of Molecular Medicine and
| | | | - Ming-Hui Zou
- From the Section of Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
15
|
Jóźwicki W, Brożyna AA, Siekiera J, Slominski AT. Expression of RCAS1 correlates with urothelial bladder cancer malignancy. Int J Mol Sci 2015; 16:3783-803. [PMID: 25674852 PMCID: PMC4346926 DOI: 10.3390/ijms16023783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
RCAS1 is a protein that participates in regulation of the tumor microenvironment and its immune responses, all in order to evade the immune system. The aim of this study was to analyze RCAS1 expression in urothelial bladder cancer cells (and in fibroblasts and macrophages of the tumor stroma) and its relationship with the histological pattern of malignancy. Eighty-three postcystectomy patients were enrolled. We analyzed the histological maturity (grade), progress (pT stage), tissue invasion type (TIT), nonclassic differentiation number (NDN), and the ability to metastasize (pN). The expression of RCAS1 protein was analyzed by immunohistochemistry. Indicators of histological malignancy were observed solely in association with the RCAS1 expression in cells in the border parts (BPs) of the tumor. Histological malignancy of the tumor, indicated by the pT and pN, and metastasis-free survival time, correlated significantly with RCAS1 expression in tumor neoplastic cells, whereas malignancy determined by grade, TIT, and NDN correlated with RCAS1 expression in fibroblasts and macrophages in the tumor microenvironment. These findings suggest that the increased RCAS1 expression depends on its cellular source and that RCAS1 expression itself is a component of various signaling pathways. The immune escape occurs within the tumor BPs, where the increase in the RCAS1 expression occurs within tumor cells and stromal cells in its microenvironment. We conclude that the histological pattern of tumor malignancy, indicated by grade, TIT, NDN, pT, and pN is a morphological indicator of immune escape.
Collapse
Affiliation(s)
- Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, the Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Romanowska Street 2, Bydgoszcz 85-796, Poland.
- Department of Tumor Pathology and Pathomorphology, the Franciszek Łukaszczyk Oncology Centre, Romanowska Street 2, Bydgoszcz 85-796, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, the Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Romanowska Street 2, Bydgoszcz 85-796, Poland.
- Department of Tumor Pathology and Pathomorphology, the Franciszek Łukaszczyk Oncology Centre, Romanowska Street 2, Bydgoszcz 85-796, Poland.
| | - Jerzy Siekiera
- Department of Urology, the Franciszek Łukaszczyk Oncology Centre, Romanowska Street 2, Bydgoszcz 85-796, Poland.
| | - Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Hong S, Zhang X, Chen J, Zhou J, Zheng Y, Xu C. Targeted gene silencing using a follicle-stimulating hormone peptide-conjugated nanoparticle system improves its specificity and efficacy in ovarian clear cell carcinoma in vitro. J Ovarian Res 2013; 6:80. [PMID: 24252539 PMCID: PMC3843555 DOI: 10.1186/1757-2215-6-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND RNA interference technology has shown high therapeutic potential for cancer treatment. However, serum instability, poor tissue permeability and non-specific uptake of short interfering RNA (siRNA) limit its administration in vivo. To overcome these limitations and improve the specificity for ovarian cancer, we developed a targeted nanoparticle delivery system for siRNA. This system included follicle-stimulating hormone (FSH) β 33-53 peptide as a targeting moiety that specifically recognized FSH receptor (FSHR) expressed on ovarian cancer cells. Growth regulated oncogene α (gro-α) has been reported to be involved in ovarian cancer development and progression. Thus, siRNA targeted to gro-α was used as an antitumor drug in this delivery system. METHODS FSH β 33-53 peptide-conjugated gro-α siRNA-loaded polyethylene glycol (PEG)-polyethylenimine (PEI) nanoparticles (FSH33-G-NP) were prepared and characterized by gel retardation assay and transmission electron microscopy. Particle size and zeta potential were determined. Expression of gro-α mRNA and protein was detected by real-time quantitative RT-PCR, immunocytochemistry and enzyme-linked immunosorbent assay. The proliferation, migration and invasion of the ovarian clear cell carcinoma cell line ES-2 were evaluated by cell counting kit-8 assay, cell scratch assay and transwell migration assay. RESULTS A siRNA sequence that is effective in silencing gro-α expression was obtained and loaded into the targeted delivery system. Compared with gro-α siRNA-loaded nanoparticles without FSH peptide modification (G-NP), FSH33-G-NP significantly down-regulated gro-α expression in ES-2 cells at mRNA and protein levels. Consequently, the aggressive biological behaviors of ES-2 cells, including proliferation, migration and invasion, were suppressed after silencing gro-α expression, and the addition of the FSH β 33-53 peptide enhanced the suppressive effects. CONCLUSIONS This study indicated that a FSHR-mediated delivery system could mediate the highly selective delivery of siRNA into ovarian cancer cells and that silencing gro-α expression could be a potential choice for ovarian cancer treatment.
Collapse
Affiliation(s)
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Wang C, Song X, Li Y, Han F, Gao S, Wang X, Xie S, Lv C. Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation. PLoS One 2013; 8:e70725. [PMID: 23967091 PMCID: PMC3744547 DOI: 10.1371/journal.pone.0070725] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/23/2013] [Indexed: 12/15/2022] Open
Abstract
Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140.
Collapse
Affiliation(s)
- Congjie Wang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Xiaodong Song
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Fang Han
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Shuyan Gao
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Xiaozhi Wang
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
- * E-mail:
| |
Collapse
|
18
|
Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 2013; 354:563-72. [DOI: 10.1007/s00441-013-1686-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
|
19
|
Sun X, Ma Z. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal Chim Acta 2013; 780:95-100. [PMID: 23680556 DOI: 10.1016/j.aca.2013.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL(-1) to 100 ng mL(-1) with a detection limit of 3 pg mL(-1) (S/N=3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.
Collapse
Affiliation(s)
- Xiaobin Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | | |
Collapse
|
20
|
Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J. Analysis of protein expression profiles in the thymus of chickens infected with Marek's disease virus. Virol J 2012; 9:256. [PMID: 23116199 PMCID: PMC3545960 DOI: 10.1186/1743-422x-9-256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV) is a highly cell-associated oncogenic α-herpesvirus that causes a disease characterised by T-cell lymphomas. The pathogenesis, or the nature of the interaction of the virus and the host, in the thymus are still unclear. RESULTS In this study, we identified 119 differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry from the thymuses of chickens infected with the RB1B strain of MDV. These differentially expressed proteins were found mainly at 21, 28 and 35 days post-infection. More than 20 of the differentially expressed proteins were directly associated with immunity, apoptosis, tumour development and viral infection and replication. Five of these proteins, ANXA1, MIF, NPM1, OP18 and VIM, were further confirmed using real-time PCR. The functional associations and roles in oncogenesis of these proteins are discussed. CONCLUSIONS This work provides a proteomic profiling of host responses to MDV in the thymus of chickens and further characterises proteins related to the mechanisms of MDV oncogenesis and pathogenesis.
Collapse
Affiliation(s)
- Xuming Hu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No,12 East Wenhui Road, Yangzhou, Jiangsu 225009, P,R,China
| | | | | | | | | | | | | |
Collapse
|
21
|
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 2012; 44:287-301. [PMID: 23050852 DOI: 10.3109/03602532.2012.725414] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²⁺ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Sun X, Ma Z. Highly stable electrochemical immunosensor for carcinoembryonic antigen. Biosens Bioelectron 2012; 35:470-474. [PMID: 22444512 DOI: 10.1016/j.bios.2012.02.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/25/2012] [Accepted: 02/28/2012] [Indexed: 01/10/2023]
Abstract
The long-term stability of sensing interfaces is an important issue in biosensor fabrication. A novel stable gold nanoparticle (AuNP)-modified glassy carbon (GC) electrode interface (GC-Ph-AuNP)-based biosensor for detecting carcinoembryonic antigen (CEA) was developed. GC electrodes were modified with 1,4-phenylenediamine to form a stable layer, and then AuNPs were bound onto the GC electrodes through CAu bonds. Anti-CEA was directly adsorbed on AuNPs fixed on the GC electrode. The linear range of the immunosensor was from 10 fg to 100 ng mL(-1) with a detection limit of 3 fg mL(-1) (S/N=3). The current of the immunosensor was increased by 4% after one month. The GC-Ph-AuNP immunosensor showed high sensitivity, a wide linear range, low detection limit, and good selectivity and stability. The immobilization method of the immunosensor could be widely applied to construct other immunosensors.
Collapse
Affiliation(s)
- Xiaobin Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
23
|
Wicherek L, Basta P, Wertel I, Kojs Z, Malkowski B, Grabiec M, Pietrus M, Krystyna G. Analysis of RCAS1 immunoreactivity within hydatidiform mole cells and decidual cells according to the applied therapeutic strategy: surgery or surgery followed by chemotherapy. Gynecol Obstet Invest 2012; 73:106-12. [PMID: 22269478 DOI: 10.1159/000328509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 04/15/2011] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Trophoblast cells cooperate with both maternal immune cells and decidual cells to help develop the suppressive microenvironment of the endometrium. The maternal immune response against hydatidiform mole depends on this suppressive endometrial profile. Since RCAS1 is one of the molecular factors participating in the development of the suppressive profile of the endometrium we decided to examine the immunoreactivity of the RCAS1 within both the trophoblast and decidual cells during the development of hydatidiform mole. METHODS We analyzed the immunoreactivity of RCAS1 on both trophoblast and decidual cells derived from patients who underwent curettage because of hydatidiform mole. These patients were then divided into two subgroups according to whether or not they required chemotherapy after the surgical procedure. RESULT We observed significantly lower immunoreactivity levels of both RCAS1 within the complete molar lesions of the patients on whom surgery alone was performed when compared to the levels found in those for whom surgery was followed by chemotherapy. CONCLUSION RCAS1 staining may provide information regarding the intensity of the immunosuppressive microenvironment of both the molar lesion and the endometrium. This information can prove significant in determining the clinical course of hydatidiform mole.
Collapse
Affiliation(s)
- Lukasz Wicherek
- Departments of Gynecology and Oncology, Lukaszczyk Oncological Center, Bydgoszcz, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lavoie JP, Lefebvre-Lavoie J, Leclere M, Lavoie-Lamoureux A, Chamberland A, Laprise C, Lussier J. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma. PLoS One 2012; 7:e29440. [PMID: 22235296 PMCID: PMC3250435 DOI: 10.1371/journal.pone.0029440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma. Objective To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition. Methods Eleven adult horses (6 heaves-affected and 5 controls) were studied while horses with heaves were in clinical remission (Pasture), and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge). Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH), lung cDNAs of controls (Pasture and Challenge) and asymptomatic heaves-affected horses (Pasture) were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge). The differential expression of selected genes of interest was confirmed using quantitative PCR assay. Results Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways. Conclusions Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for asthma were identified. The findings of genes previously associated with asthma validate this equine model for gene expression studies.
Collapse
Affiliation(s)
- Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Berardi S, Caivano A, Ria R, Nico B, Savino R, Terracciano R, De Tullio G, Ferrucci A, De Luisi A, Moschetta M, Mangialardi G, Catacchio I, Basile A, Guarini A, Zito A, Ditonno P, Musto P, Dammacco F, Ribatti D, Vacca A. Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene 2011; 31:2258-69. [PMID: 21963844 DOI: 10.1038/onc.2011.412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone marrow (BM) angiogenesis has an important role in the initiation and progression of multiple myeloma (MM). We looked at novel mechanisms of vessel formation in patients with MM through a comparative proteomic analysis between BM endothelial cells (ECs) of patients with active MM (MMECs) and ECs of patients with monoclonal gammopathy of undetermined significance (MGECs) and of subjects with benign anemia (normal ECs). Four proteins were found overexpressed in MMECs: filamin A, vimentin, α-crystallin B and 14-3-3ζ/δ protein, not yet linked to overangiogenic phenotype. These proteins gave a typical distribution in the BM of MM patients and in MMECs versus MGECs, plausibly according to a different functional state. Their expression was enhanced by vascular endothelial growth factor, fibroblast growth factor 2, hepatocyte growth factor and MM plasma cell conditioned medium in step with enhancement of MMEC angiogenesis. Their silencing RNA knockdown affected critical MMEC angiogenesis-related functions, such as spreading, migration and tubular morphogenesis. A gradual stabilization of 14-3-3ζ/δ protein was observed, with transition from normal ECs to MGECs and MMECs that may be a critical step for the angiogenic switch in MMECs and maintenance of the cell overangiogenic phenotype. These proteins were substantially impacted by anti-MM drugs, such as bortezomib, lenalidomide and panobinostat. Results suggest that these four proteins could be new targets for the antiangiogenic management of MM patients.
Collapse
Affiliation(s)
- S Berardi
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jozwicki W, Windorbska W, Brozyna AA, Jochymski C, Basta P, Sikora J, Stasienko E, Dutsch-Wicherek M, Koper K, Wicherek L. The analysis of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) immunoreactivity within the microenvironment of the ovarian cancer lesion relative to the applied therapeutic strategy. Cell Tissue Res 2011; 345:405-14. [PMID: 21845402 PMCID: PMC3168756 DOI: 10.1007/s00441-011-1216-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/15/2011] [Indexed: 12/31/2022]
Abstract
RCAS1 is involved in generating the suppressive profile of the tumor microenvironment that helps cancer cells evade immune surveillance. The status of the cells surrounding the cancer nest may affect both the progression of the cancer and the development of metastases. In cases of ovarian cancer, a large number of patients do not respond to the applied therapy. The patient’s response to the applied therapy is directly linked to the status of the tumor microenvironment and the intensity of its suppressive profile. We analyzed the immunoreactivity of RCAS1 on the cells present in the ovarian cancer microenvironment in patients with the disease; these cells included macrophages and carcinoma-associated fibroblasts. Later we analyzed the immunoreactivity levels within these cells, taking into consideration the clinical stage of the cancer and the therapeutic strategy applied, such as the number of chemotherapy regiments, primary cytoreductive surgery, or the presence of advanced ascites. In the patients who did not respond to the therapy we observed significantly higher immunoreactivity levels of RCAS1 within the cancer nest than in those patients who did respond; moreover, in the non-responsive patients we found RCAS1 within both macrophages and carcinoma-associated fibroblasts. RCAS1 staining may provide information about the intensity of the immuno-suppressive microenvironment profile found in cases of ovarian cancer and its intensity may directly relate to the clinical outcome of the disease.
Collapse
Affiliation(s)
- Wojciech Jozwicki
- Department of Tumor Pathology and Pathomorphology of the Franciszek Lukaszczyk Oncology Center, the Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 2011; 23:1907-20. [PMID: 21864675 DOI: 10.1016/j.cellsig.2011.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 11/20/2022]
Abstract
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.
Collapse
|
28
|
Oak SR, Murray L, Herath A, Sleeman M, Anderson I, Joshi AD, Coelho AL, Flaherty KR, Toews GB, Knight D, Martinez FJ, Hogaboam CM. A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One 2011; 6:e21253. [PMID: 21712985 PMCID: PMC3119674 DOI: 10.1371/journal.pone.0021253] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/25/2011] [Indexed: 11/30/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. Methodology and Principal Findings miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. Conclusion These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing.
Collapse
Affiliation(s)
- Sameer R Oak
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Matuszak EA, Kyprianou N. Androgen regulation of epithelial-mesenchymal transition in prostate tumorigenesis. Expert Rev Endocrinol Metab 2011; 6:469-482. [PMID: 23667383 PMCID: PMC3648215 DOI: 10.1586/eem.11.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer patient mortality is ascribed to the spread of cancerous cells to areas outside the prostate gland and the inability of current treatment strategies to effectively block progression to metastasis. Understanding the cellular mechanisms contributing to the dissemination of malignant cells and metastasis is critically significant to the generation of effective therapeutic modalities for improved patient survival while combating therapeutic resistance. In recent years, the phenomenon of epithelial-mesenchymal transitions (EMTs) has received considerable attention due to accumulating evidence indicating a role for this developmentally conserved process in tumorigenesis. Cancer cells at the invasive edges of tumors undergo EMT under the influence of contextual signals that they receive from the microenvironment, such as TGF-β. Also derived from developmental studies is the fact that EMT induction is reversible; thus, upon removal of EMT-inducing signals, cells occasionally revert to the epithelial state of their cellular ancestors via the process of mesenchymal-epithelial transition. This article discusses the current evidence supporting a central role for EMT and its reverse process, mesenchymal-epithelial transition, in the metastatic progression of prostate cancer to advanced disease and the involvement of androgen signaling in its regulation towards the development of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Emily A Matuszak
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Surgery/Urology, University of Kentucky College of Medicine, KY, USA
| | - Natasha Kyprianou
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Surgery/Urology, University of Kentucky College of Medicine, KY, USA
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
30
|
De Luisi A, Ferrucci A, Coluccia AML, Ria R, Moschetta M, de Luca E, Pieroni L, Maffia M, Urbani A, Di Pietro G, Guarini A, Ranieri G, Ditonno P, Berardi S, Caivano A, Basile A, Cascavilla N, Capalbo S, Quarta G, Dammacco F, Ribatti D, Vacca A. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res 2011; 17:1935-46. [PMID: 21307145 DOI: 10.1158/1078-0432.ccr-10-2381] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To determine the in vivo and in vitro antiangiogenic power of lenalidomide, a "lead compound" of IMiD immunomodulatory drugs in bone marrow (BM) endothelial cells (EC) of patients with multiple myeloma (MM) in active phase (MMEC). EXPERIMENTAL DESIGN The antiangiogenic effect in vivo was studied using the chorioallantoic membrane (CAM) assay. Functional studies in vitro (angiogenesis, "wound" healing and chemotaxis, cell viability, adhesion, and apoptosis) were conducted in both primary MMECs and ECs of patients with monoclonal gammopathies (MGUS) of undetermined significance (MGEC) or healthy human umbilical vein endothelial cells (HUVEC). Real-time reverse transcriptase PCR, Western blotting, and differential proteomic analysis were used to correlate morphologic and biological EC features with the lenalidomide effects at the gene and protein levels. RESULTS Lenalidomide exerted a relevant antiangiogenic effect in vivo at 1.75 μmol/L, a dose reached in interstitial fluids of patients treated with 25 mg/d. In vitro, lenalidomide inhibited angiogenesis and migration of MMECs, but not of MGECs or control HUVECs, and had no effect on MMEC viability, apoptosis, or fibronectin- and vitronectin-mediated adhesion. Lenalidomide-treated MMECs showed changes in VEGF/VEGFR2 signaling pathway and several proteins controlling EC motility, cytoskeleton remodeling, and energy metabolism pathways. CONCLUSIONS This study provides information on the molecular mechanisms associated with the antimigratory and antiangiogenic effects of lenalidomide in primary MMECs, thus giving new avenues for effective endothelium-targeted therapies in MM.
Collapse
Affiliation(s)
- Annunziata De Luisi
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The Involvement of RCAS1 in Creating a Suppressive Tumor Microenvironment in Patients with Salivary Gland Adenocarcinoma. CANCER MICROENVIRONMENT 2010; 4:13-21. [PMID: 21505558 PMCID: PMC3047626 DOI: 10.1007/s12307-010-0051-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/05/2010] [Indexed: 12/29/2022]
Abstract
The tumor microenvironment is the tissue that determines the growth and progression of the tumor as well as its ability to initiate metastases. The aim of the present study has been to evaluate the role of RCAS1 in creating the suppressive tumor microenvironment in cases of parotid adenocarcinoma. The tissue samples of salivary gland adenocarcinomas and their stroma and the palatine tonsils which constituted the reference tissue sample group were obtained during routine surgical procedures. The immunoreactivity of RCAS1, CD3, CD25, CD68, CD69, and Foxp3 antigens was then evaluated by using the immunohistochemistry method. The patient’s consent was obtained in each case. A statistically significantly higher RCAS1 immunoreactivity level was found in the adenocarcinoma tissue samples in comparison to that found in the stromal tissue samples. A statistically significantly higher RCAS1 immunoreactivity was also identified in the adenocarcinoma tissue samples derived from patients who had lymph node metastases in comparison to patients without such metastases. Additionally, we observed the presence of RCAS1-positive macrophages in the stromal tissue samples. The infiltration of CD68-positive cells was significantly stronger in the adenocarcinoma and stromal tissue slides than in the reference group tissue slides; moreover, the infiltration was a good deal more prominent in the stromal tissue than in the adenocarcinoma tissue. The CD68 immunoreactivity levels in both the tumor and stromal tissue samples were found to be significantly higher in those patients who had lymph node metastases than in the patients without such metastases. Additionally, the infiltration of CD3- and CD25-positive cells was more prominent in the reference tissue slides than in the adenocarcinoma and stromal tissue slides, and was stronger in the adenocarcinoma tissue than in the stromal tissue. Furthermore, the infiltration of Foxp3-positive cells was seen exclusively in the stroma whereas it was not even detected in the adenocarcinoma tissue. Lastly, the Foxp3-positive cell infiltration was more prominent in the stromal tissue than in the reference group tissue. The present study demonstrates that RCAS1 expression by both tumor cells and tumor-associated macrophages may participate in creating the immunosuppressive microenvironment in parotid gland adenocarcinoma, thus promoting tumor development as well as metastases.
Collapse
|
32
|
Tang J, Su B, Tang D, Chen G. Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for α-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement. Biosens Bioelectron 2010; 25:2657-62. [DOI: 10.1016/j.bios.2010.04.039] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/14/2010] [Accepted: 04/26/2010] [Indexed: 01/28/2023]
|