1
|
Pham DL, Cox K, Ko ML, Ko GYP. Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide. Biomedicines 2024; 12:2851. [PMID: 39767758 PMCID: PMC11672992 DOI: 10.3390/biomedicines12122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance KCa channels (KCa3.1) in vascular endothelial cells. Peptide Lv is upregulated in the retinas of patients with early proliferative diabetic retinopathy, a disease involving pathological angiogenesis. This review will provide an overview of peptide Lv, its known bioactivities in vitro and in vivo, and its clinical relevance, with a focus on its role in angiogenesis. As there is more about peptide Lv to be explored, this article serves as a foundation for possible future developments of peptide Lv-related therapeutics to treat or prevent diseases.
Collapse
Affiliation(s)
- Dylan L. Pham
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Kelsey Cox
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, TX 77802, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Arni S, Maeyashiki T, Latshang T, Opitz I, Inci I. Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells 2021; 10:cells10092296. [PMID: 34571948 PMCID: PMC8472464 DOI: 10.3390/cells10092296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) has been implemented to increase the number of donor lungs available for transplantation. The use of K(ATP) channel modulators during EVLP experiments may protect against lung ischemia-reperfusion injury and may inhibit the formation of reactive oxygen species. In a rat model of donation after circulatory death with 2 h warm ischemic time, we evaluated rat lungs for a 4-hour time in EVLP containing either mitochondrial-specific or plasma membrane and/or sarcolemmal-specific forms of K(ATP) channel modulators. Lung physiological data were recorded, and metabolic parameters were assessed. When compared to the control group, in the EVLP performed with diazoxide or 5-hydroxydecanoic acid (5-HD) we recorded significantly lower pulmonary vascular resistance and only in the diazoxide group recorded significant lung weight loss. In the perfusate of the 5-HD group, interleukin-1β and interleukin-1α were significantly lower when compared to the control group. Perfusate levels of calcium ions were significantly higher in both 5-HD and cromakalim groups, whereas the levels of calcium, potassium, chlorine and lactate were reduced in the diazoxide group, although not significantly when compared to the control. The use of a diazoxide mitochondrial-specific K(ATP) channel opener during EVLP improved lung physiological and metabolic parameters and reduced edema.
Collapse
Affiliation(s)
- Stephan Arni
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tsogyal Latshang
- Department of Pneumology, Kantonsspital Graubünden, 7000 Chur, Switzerland;
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
- Correspondence: ; Tel.: +41-(0)-44-255-85-43
| |
Collapse
|
3
|
Wang D, Yang X, Zhang Y, Lin D, Li P, Zhang Z, Huang X, Gu D, Loo JFC. Platelet mitochondrial cytochrome c oxidase subunit I variants with benzene poisoning. J Thorac Dis 2018; 10:6811-6818. [PMID: 30746226 DOI: 10.21037/jtd.2018.11.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Chronic benzene poisoning (CBP) is one of the most common chronic occupational poisoning which is associated with mitochondrial oxidative damage, and lead to increasing risk of respiratory diseases such as lung cancer. Cytochrome c oxidase subunit I (COI) is one of the key enzymes that plays an important role in oxidative damage regulation by eliminating reactive oxygen species (ROS). This study investigated the relationship between COI gene variants and the risk of CBP. Methods We investigated 44 non-smoking patients who were diagnosed with CBP and 57 unexposed non-smoking controls between the ages of 23 and 60 with their background including work experience, lifestyle and medical records. Peripheral blood (2 mL) was collected in EDTA tube and the platelet was purified from the collected blood. Variants of COI were analyzed by PCR and sequencing. Multivariable linear regression analysis was used to assess the association between CBP exposure and variants. Results The frequency of the mitochondrial DNA (mtDNA) T6392C, G6962 variants were 10, 7 out of 44 CBP group patients, which was higher when compared to that of 4, 2 out of 57 in the control group, suggesting these variants could be the risk factor for CBP [odds ratio (OR) 3.897, 95% CI: 1.131-13.425, P=0.023; OR 5.203, 95% CI: 1.024-26.442, P=0.034]. There was a significant difference (P<0.05) of COI variants, including T6392C and G6962A, in platelet mtDNA between patients and control samples. Meanwhile, the frequency of the mtDNA C7196A variant were 13 out of 44 control group, which was higher when compared to that of 2 of 57 in the CBP group patients, suggesting this variant could be the protective factor for CBP (OR 6.205, 95% CI: 1.320-29.162, P=0.010). Conclusions Our study suggests that T6392C, G6962A and C7196A from platelet mtDNA variants play a significant role in the etiology of CBP and facilitate the development of molecular biomarker on CBP diagnosis.
Collapse
Affiliation(s)
- Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Xiangli Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Paimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Zhiming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Xianqing Huang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Dayong Gu
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen 518033, China
| | - Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
King ZA, Sheth KN, Kimberly WT, Simard JM. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2539-2552. [PMID: 30147301 PMCID: PMC6101021 DOI: 10.2147/dddt.s150043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glyburide (also known as glibenclamide) is a second-generation sulfonylurea drug that inhibits sulfonylurea receptor 1 (Sur1) at nanomolar concentrations. Long used to target KATP (Sur1–Kir6.2) channels for the treatment of diabetes mellitus type 2, glyburide was recently repurposed to target Sur1–transient receptor potential melastatin 4 (Trpm4) channels in acute central nervous system injury. Discovered nearly two decades ago, SUR1–TRPM4 has emerged as a critical target in stroke, specifically in large hemispheric infarction, which is characterized by edema formation and life-threatening brain swelling. Following ischemia, SUR1–TRPM4 channels are transcriptionally upregulated in all cells of the neurovascular unit, including neurons, astrocytes, microglia, oligodendrocytes and microvascular endothelial cells. Work by several independent laboratories has linked SUR1–TRPM4 to edema formation, with blockade by glyburide reducing brain swelling and death in preclinical models. Recent work showed that, following ischemia, SUR1–TRPM4 co-assembles with aquaporin-4 to mediate cellular swelling of astrocytes, which contributes to brain swelling. Additionally, recent work linked SUR1–TRPM4 to secretion of matrix metalloproteinase-9 (MMP-9) induced by recombinant tissue plasminogen activator in activated brain endothelial cells, with blockade of SUR1–TRPM4 by glyburide reducing MMP-9 and hemorrhagic transformation in preclinical models with recombinant tissue plasminogen activator. The recently completed GAMES (Glyburide Advantage in Malignant Edema and Stroke) clinical trials on patients with large hemispheric infarctions treated with intravenous glyburide (RP-1127) revealed promising findings with regard to brain swelling (midline shift), MMP-9, functional outcomes and mortality. Here, we review key elements of the basic science, preclinical experiments and clinical studies, both retrospective and prospective, on glyburide in focal cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Zachary A King
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
6
|
The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation 2015; 38:835-45. [PMID: 25113133 DOI: 10.1007/s10753-014-9993-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways.
Collapse
|
7
|
Zhu X, Liu J, Gao Y, Cao S, Shen S. ATP-sensitive potassium channels alleviate postoperative pain through JNK-dependent MCP-1 expression in spinal cord. Int J Mol Med 2015; 35:1257-65. [PMID: 25812598 PMCID: PMC4380206 DOI: 10.3892/ijmm.2015.2143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
Although adenosine triphosphate-sensitive potassium (KATP) channels have been proven to be involved in regulating postoperative pain, the underlying mechanism remains to be investigated. In this study, we aimed to determine the role of spinal KATP channels in the control of mechanical hypersensitivity in a rat pain model, in which rats were subjected to skin/muscle incision and retraction (SMIR) surgery, as well as in LPS-stimulated astrocytes. The results showed that KATP channel subunits Kir6.1, SUR1 and SUR2 were normally expressed in the spinal cord and significantly downregulated after SMIR. SMIR caused a marked increase in monocyte chemoattractant protein-1 (MCP-1) mRNA expression and in the protein level of p-JNK in the spinal cord. Intrathecal administration of a KATP channel opener pinacidil (Pina) suppressed mechanical allodynia after SMIR and significantly downregulated the MCP-1 mRNA expression and the protein level of p-JNK induced by SMIR. Inverted fluorescence microscopy showed that Kir6.1 was co-localized with astrocytes only and SUR2 was co-localized primarily with neurons, in a small amount with astrocytes. Furthermore, in vitro studies showed that following incubation with LPS, the astrocytic MCP-1 mRNA expression and p-JNK content were markedly increased, whereas the mRNA levels of Kir6.1 and SUR2 were significantly downregulated in astrocytes. KATP channel opener pinacidil inhibited the LPS-triggered MCP-1 and p-JNK elevation in rat primary astrocytes. The results suggested that KATP channel opener treatment is an effective therapy for postoperative pain in animals, through the activation of the JNK/MCP-1 pathway in astrocytes.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jinqian Liu
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yongjing Gao
- Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shiren Shen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Simard JM, Sheth KN, Kimberly WT, Stern BJ, del Zoppo GJ, Jacobson S, Gerzanich V. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care 2014; 20:319-33. [PMID: 24132564 DOI: 10.1007/s12028-013-9923-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and "accidental necrotic cell death." Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1-2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA,
| | | | | | | | | | | | | |
Collapse
|
9
|
Buchanan PJ, McNally P, Harvey BJ, Urbach V. Lipoxin A₄-mediated KATP potassium channel activation results in cystic fibrosis airway epithelial repair. Am J Physiol Lung Cell Mol Physiol 2013; 305:L193-201. [PMID: 23686859 DOI: 10.1152/ajplung.00058.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung destruction as a result of persistent bacterial infection and inflammation, coupled with reduced capacity for epithelial repair. Levels of the anti-inflammatory mediator lipoxin A₄ (LXA₄) have been reported to be reduced in bronchoalveolar lavages of patients with CF. We investigated the ability of LXA₄ to trigger epithelial repair through the initiation of proliferation and migration in non-CF (NuLi-1) and CF (CuFi-1) airway epithelia. Spontaneous repair and cell migration were significantly slower in CF epithelial cultures (CuFi-1) compared with controls (NuLi-1). LXA₄ triggered an increase in migration, proliferation, and wound repair of non-CF and CF airway epithelia. These responses to LXA₄ were completely abolished by the ALX/FPR2 receptor antagonist, Boc2 and ALX/FPR2 siRNA. The KATP channel opener pinacidil mimicked the LXA₄ effect on migration, proliferation, and epithelial repair, whereas the KATP channel inhibitor, glibenclamide, blocked the responses to LXA₄. LXA₄ did not affect potassium channel expression but significantly upregulated glibenclamide-sensitive (KATP) currents through the basolateral membrane of NuLi-1 and CuFi-1 cells. MAP kinase (ERK1/2) inhibitor, PD98059, also inhibited the LXA₄-induced proliferation of NuLi-1 and CuFi-1 cells. Finally, both LXA₄ and pinacidil stimulated ERK-MAP kinase phosphorylation, whereas the effect of LXA₄ on ERK phosphorylation was inhibited by glibenclamide. Taken together, our results provided evidence for a role of LXA₄ in triggering epithelial repair through stimulation of the ALX/FPR2 receptor, KATP potassium channel activation, and ERK phosphorylation. This work suggests exogenous delivery of LXA₄, restoring levels in patients with CF, perhaps as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paul J Buchanan
- National Children's Research Center, Our Lady's Children Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
10
|
Ling MY, Ma ZY, Wang YY, Qi J, Liu L, Li L, Zhang Y. Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis 2012; 226:348-55. [PMID: 23218803 DOI: 10.1016/j.atherosclerosis.2012.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/24/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ion channels expressed in monocytes/macrophages have been tightly attached to atherosclerosis by coupling cellular function with electrical activity. However, the function of ATP-sensitive potassium channels (K(ATP)) in atherosclerosis has not been investigated directly. This study was performed to explore its role in atherosclerosis. METHODS AND RESULTS ApoE(-/-) mice with collar placement and Ad5-CMV.p53 or lac Z gene transfer with or without intragastric administration glibenclamide were applied to establish the progressive atherosclerosis at different time points and detect the function of K(ATP) channel in atherosclerosis. The expression and distribution of K(ATP) subunits in plaques were examined and a correlation between K(ATP) subunits expressed in macrophages, mainly Kir6.2 and SUR2A, and the vulnerability index of plaques was observed. In vitro, glibenclamide and pinacidil were used to detect the function and mechanism of K(ATP) channels in RAW264.7 cells stimulated by LPS. And the data showed that glibenclamide could ameliorate the progress of atherosclerosis and reduce the production of inflammatory cytokines as well as the phosphorylation of p65 and ERK1/2, while inhibitors of p65 leaded to robust expression of K(ATP) subunits in macrophages. CONCLUSIONS We concluded that K(ATP) channels in monocytes/macrophages were up-regulated and correlated with increased inflammation in vulnerable plaques, while glibenclamide could rescue the progression. K(ATP) channels may stimulate inflammatory reaction by MAPKs/NF-κB pathways in macrophages.
Collapse
Affiliation(s)
- Ming-Ying Ling
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, QiLu Hospital, Shandong University, West Wenhua Road 107, Jinan 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32:1699-717. [PMID: 22714048 PMCID: PMC3434627 DOI: 10.1038/jcbfm.2012.91] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH). The channel is linked to microvascular dysfunction that manifests as edema formation and delayed secondary hemorrhage. Also implicated in oncotic cell swelling and oncotic (necrotic) cell death, the channel is a major molecular mechanism of 'accidental necrotic cell death' in the CNS. In animal models of SCI, pharmacological inhibition of Sur1 by glibenclamide, as well as gene suppression of Abcc8, prevents delayed capillary fragmentation and tissue necrosis. In models of stroke and TBI, glibenclamide ameliorates edema, secondary hemorrhage, and tissue damage. In a model of SAH, glibenclamide attenuates the inflammatory response due to extravasated blood. Clinical trials of an intravenous formulation of glibenclamide in TBI and stroke underscore the importance of recent advances in understanding the role of the Sur1-regulated NC(Ca-ATP) channel in acute ischemic, traumatic, and inflammatory injury to the CNS.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Based on the genetic relationship, single-channel conductance, and gating mechanisms, calcium-activated potassium (KCa) channels identified in vasculature can be divided into 3 groups including large-conductance KCa, small, and intermediate conductance KCa. KCa channels in smooth muscle and endothelial cells are essential for the regulation of vascular tone. Vascular dysfunction under ischemia-reperfusion (I-R) or hypoxia-reoxygenation (H-R) conditions is associated with modulations of KCa channels that are attributable to multiple mechanisms. Most studies in this regard relied on the change of relaxation components sensitive to certain channel blockers to indicate the alteration of KCa channels under I-R conditions, which however provided conflicting results for the effect of I-R. The possible mechanisms involved in KCa channel modulation under I-R/H-R include overproduction of reactive oxygen species such as superoxide anion, hydrogen peroxide, and peroxynitrite, increase of intracellular H ion, and lactate accumulation, etc. However, more studies are necessary to further understand the discrepancies in the sensitivity of KCa channels to I-R injury in different vascular beds.
Collapse
|
13
|
Shao Y, Wu LL, Gao HW, Wang F. Effect of soluble sulfide on the activity of luminescent bacteria. Molecules 2012; 17:6046-55. [PMID: 22614859 PMCID: PMC6268069 DOI: 10.3390/molecules17056046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S²⁻, as a weak acidic anion, is easy hydrolyzed to HS⁻ and H₂S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances--S²⁻, HS⁻ and H₂S--the toxicity test was performed at different pH values to investigate which form of sulfide increased light emission and which reduced light emission. It was shown that the EC₅₀ values were close at pH 7.4, 8.0 and 9.0 which were higher than pH 5 and 10. The light emission and sulfide concentrations displayed an inverse exponential dose-response relationship within a certain concentration range at pH 5, 6.5 and 10. The same phenomenon occurred for the high concentration of sulfide at pH 7.4, 8 and 9, in which the concentration of sulfide was HS⁻ >> H₂S > S²⁻. An opposite hormesis-effect appeared at the low concentrations of sulfide.
Collapse
Affiliation(s)
- Ying Shao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 20092, China; E-Mails: (Y.S.); (F.W.)
| | - Ling-Ling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 20092, China; E-Mails: (Y.S.); (F.W.)
| | - Hong-Wen Gao
- State Key Laboratory of Environmental Pollution and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; E-Mail:
| | - Feng Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 20092, China; E-Mails: (Y.S.); (F.W.)
| |
Collapse
|
14
|
Szabó C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 2012; 164:853-65. [PMID: 21198548 DOI: 10.1111/j.1476-5381.2010.01191.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vascular tissues, hydrogen sulphide (H(2)S) is mainly produced from L-cysteine by the cystathionine gamma-lyase (CSE) enzyme. Recent studies show that administration of H(2)S to endothelial cells in culture stimulates cell proliferation, migration and tube formation. In addition, administration of H(2)S to chicken chorioallantoic membranes stimulates blood vessel growth and branching. Furthermore, in vivo administration of H(2)S to mice stimulates angiogenesis, as demonstrated in the Matrigel plug assay. Pathways involved in the angiogenic response of H(2)S include the PI-3K/Akt pathway, the mitogen activated protein kinase pathway, as well as ATP-sensitive potassium channels. Indirect evidence also suggests that the recently demonstrated role of H(2)S as an inhibitor of phosphodiesterases may play an additional role in its pro-angiogenic effect. The endogenous role of H(2)S in the angiogenic response has been demonstrated in the chicken chorioallantoic membranes, in endothelial cells in vitro and ex vivo. Importantly, the pro-angiogenic effect of vascular endothelial growth factor (but not of fibroblast growth factor) involves the endogenous production of H(2)S. The pro-angiogenic effects of H(2)S are also apparent in vivo: in a model of hindlimb ischaemia-induced angiogenesis, H(2)S induces a marked pro-angiogenic response; similarly, in a model of coronary ischaemia, H(2)S exerts angiogenic effects. Angiogenesis is crucial in the early stage of wound healing. Accordingly, topical administration of H(2)S promotes wound healing, whereas genetic ablation of CSE attenuates it. Pharmacological modulation of H(2)S-mediated angiogenic pathways may open the door for novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, 77555-1102, USA.
| | | |
Collapse
|
15
|
Simard JM, Tsymbalyuk O, Keledjian K, Ivanov A, Ivanova S, Gerzanich V. Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury. Exp Neurol 2011; 233:566-74. [PMID: 22177998 DOI: 10.1016/j.expneurol.2011.11.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/21/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
Both glibenclamide and riluzole reduce necrosis and improve outcome in rat models of spinal cord injury (SCI). In SCI, gene suppression experiments show that newly upregulated sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channels in microvascular endothelial cells are responsible for "persistent sodium currents" that cause capillary fragmentation and "progressive hemorrhagic necrosis". Glibenclamide is a potent blocker of Sur1-regulated NC(Ca-ATP) channels (IC(50), 6-48 nM). Riluzole is a pleotropic drug that blocks "persistent sodium currents" in neurons, but in SCI, its molecular mechanism of action is uncertain. We hypothesized that riluzole might block the putative pore-forming subunits of Sur1-regulated NC(Ca-ATP) channels, Trpm4. In patch clamp experiments, riluzole blocked Sur1-regulated NC(Ca-ATP) channels in endothelial cells and heterologously expressed Trpm4 (IC(50), 31 μM). Using a rat model of cervical SCI associated with high mortality, we compared the effects of glibenclamide and riluzole administered beginning at 3h and continuing for 7 days after impact. During the acute phase, both drugs reduced capillary fragmentation and progressive hemorrhagic necrosis, and both prevented death. At 6 weeks, modified (unilateral) Basso, Beattie, Bresnahan locomotor scores were similar, but measures of complex function (grip strength, rearing, accelerating rotarod) and tissue sparing were significantly better with glibenclamide than with riluzole. We conclude that both drugs act similarly, glibenclamide on the regulatory subunit, and riluzole on the putative pore-forming subunit of the Sur1-regulated NC(Ca-ATP) channel. Differences in specificity, dose-limiting potency, or in spectrum of action may account for the apparent superiority of glibenclamide over riluzole in this model of severe SCI.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Reznik O, Skvortsov A, Loginov I, Ananyev A, Bagnenko S, Moysyuk Y. Kidney from uncontrolled donors after cardiac death with one hour warm ischemic time: resuscitation by extracorporal normothermic abdominal perfusion "in situ" by leukocytes-free oxygenated blood. Clin Transplant 2010; 25:511-6. [PMID: 20973824 DOI: 10.1111/j.1399-0012.2010.01333.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The availability of brain death donors is restricted by many factors. Use of uncontrolled donors after cardiac death could be a promising perspective, but the limiting factor in uncontrolled donation after cardiac death is the warm ischemic time. The purpose of our work was to develop an in situ kidney preservation protocol with application of the extracorporal normothermic abdominal perfusion for organ resuscitation in uncontrolled donors after cardiac death. The main attention was paid to the elimination of leukocytes as the key damaging factor from modified donor oxygenated blood circulating in the device. In 2009, we had 10 uncontrolled donors with warm ischemic time from 45 to 92 min; a normothermic extracorporal perfusion device was applied, providing preservation and restoration of kidney after ischemic damage. In 6 out of 20 kidney recipients, graft function was recovered immediately. All kidney grafts are functioning, and to the end of the third month, the average creatinine was 118.5 ± 19.9 mM. Treatment of ischemically damaged kidney by normothermic extracorporal perfusion with leukocyte depletion before procurement seems to be a challenging protocol for expanding donors' pool and demands further study.
Collapse
Affiliation(s)
- Oleg Reznik
- Transplant Department, St. Petersburg State Research Institute for Emergency, St. Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Reznik O, Bagnenko S, Scvortsov A, Loginov I, Ananyev A, Senchik K, Moysyuk Y. The use of in-situ normothermic extracorporeal perfusion and leukocyte depletion for resuscitation of human donor kidneys. Perfusion 2010; 25:343-8. [DOI: 10.1177/0267659110377817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The unexploited potential of donors after cardiac death is an actual issue for all countries where organ transplantation is performed. The crucial point in uncontrolled donation after cardiac death is the warm ischemic time. The primary purpose of our work was to define the limits of warm ischemic time. Another purpose was the development of an in situ kidney preservation protocol. In 8 uncontrolled donors with warm ischemic time from 45 to 91 minutes, a normothermic extracorporeal perfusion device was applied, providing preservation and restoration of the kidney after ischemic damage. Main attention was paid to the elimination of leukocytes as the key damaging factor from modified donor blood circulating in the device. In 6 out of 16 kidney recipients, graft function was recovered immediately and, by the end of the third month, the average creatinine was 117.9±21.9 mmol/L. Treatment of ischemically damaged kidneys by normothermic extracorporeal perfusion, with leukocyte depletion before procurement, seems to be a challenging protocol and demands further study. Implementation of perfusion systems in organ procurement practice could lead to a partial solution in the organ deficit problem.
Collapse
Affiliation(s)
- Oleg Reznik
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia,
| | - Sergey Bagnenko
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia
| | - Andrei Scvortsov
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia
| | - Igor Loginov
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia
| | - Alexei Ananyev
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia
| | - Konstantin Senchik
- Saint-Petersburg Russian Federation Saint-Petersburg State Research Institute for Emergency, Saint-Petersburg, Russia
| | - Yan Moysyuk
- Shumakov Research Center of Transplantology, Moscow, Russia
| |
Collapse
|
18
|
Hughes EL, Gavins FN. Troubleshooting methods: Using intravital microscopy in drug research. J Pharmacol Toxicol Methods 2010; 61:102-12. [DOI: 10.1016/j.vascn.2010.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 12/30/2022]
|