1
|
Hayman J, Fortune DW. Sexual Orientation in Twins: Evidence That Human Sexual Identity May Be Determined Five Days Following Fertilization. Cureus 2023; 15:e51346. [PMID: 38161549 PMCID: PMC10757681 DOI: 10.7759/cureus.51346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 01/03/2024] Open
Abstract
Human same-sex sexual attraction has been recorded from the beginning of written history. It remains a controversial topic, but recent theories favor prenatal influences. A paradox is the occurrence of same-sex orientation in twins in that there is a higher level of concordance in monozygous twins compared to that in dizygous twins or non-twin siblings. If sexual orientation was entirely genetically determined monozygous twins would be expected to have identical sexual inclinations. Monozygous twins have twice the incidence of sexual concordance in comparison to dizygous twins but a third of these pairs have different sexual identities. An explanation for this disparity may lie in the time an embryo splits to form two separate fetuses. If splitting occurs early in twin development each twin may develop his or her own sexual identity; splitting occurring later results in twins that have the same sexual dispositions. A possible process for such determination may be in the mitochondria, with universal maternal inheritance of a proportion of normal functioning but alternate mitochondria. Variation in the distribution of these mitochondria in neural precursor cells becomes a mechanism for the development of intrinsic sexual orientation and for the spectrum of human sexual inclinations. The timing of embryonic splitting may be determined from the examination of fetal membranes, and the concept of early fetal sexual orientation is open to support or disproval.
Collapse
Affiliation(s)
- John Hayman
- Clinical Pathology, The University of Melbourne, Melbourne, AUS
| | | |
Collapse
|
2
|
Lalrohlui F, Zohmingthanga J, Hruaii V, Kumar NS. Genomic profiling of mitochondrial DNA reveals novel complex gene mutations in familial type 2 diabetes mellitus individuals from Mizo ethnic population, Northeast India. Mitochondrion 2019; 51:7-14. [PMID: 31862415 DOI: 10.1016/j.mito.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
The variants reported for mitochondrial DNA (mtDNA) and type 2 diabetes (T2D) may not be accountable for the disease in certain other populations and the risk depends upon numerous factors which may include genetics, environment as well as ethnicity. This leads to a challenge in identifying, exploring and comparing the variants between diabetic cases and healthy controls in a remote unexplored tribal population. To study the possible contribution of mtDNA variants, we sequenced the entire mitochondrial genomes and the frequencies of mtSNPs, their association with familial T2D and the potential impact of non-synonymous substitutions on protein functions were determined. The mtSNP 8584 G > A (ATP6: A20T) was detected in 14.28% of the diabetic patients and none in the control groups. The mitochondrial ND3 variant 10398A > G was found to be significantly associated with the risk of T2D (OR = 9.489, 95% CI = 1.161-77.54, P value = 0.036). A novel Frame-shift substitution ND5: 81_81ins A at position 12,417 was observed in 53.57% of diabetic individuals. Majority of the variants lie in tRNA-Phe in the non-protein coding region of mtDNA for both diabetic cases and common cases. We concluded that mutations in the coding (synonymous or non-synonymous) and noncoding regions of the mitochondria might have contribution towards the development of T2D. Our study is the first to report the distinct mitochondrial variants which may be attributed to the susceptibility as well as development of type 2 diabetes in an ethnic tribe from northeast India.
Collapse
Affiliation(s)
- Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vanlal Hruaii
- Department of Medicine, Zoram Medical College, Aizawl 796005, Mizoram, India
| | | |
Collapse
|
3
|
Kim JI, Lee SY, Park M, Kim SY, Kim JW, Kim SA, Kim BN. Peripheral Mitochondrial DNA Copy Number is Increased in Korean Attention-Deficit Hyperactivity Disorder Patients. Front Psychiatry 2019; 10:506. [PMID: 31379624 PMCID: PMC6656858 DOI: 10.3389/fpsyt.2019.00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The involvement of mitochondrial dysfunction in the pathophysiology of attention-deficit hyperactivity disorder (ADHD) has been suggested in several reports. Mitochondrial DNA (mtDNA) copy number as well as methylation of the D-loop region and peroxisome-proliferator-activated receptor γ co-activator-1α (PPARGC1A) are considered biomarkers for mitochondrial dysfunction. We compared the mtDNA copy number and methylation ratio of the D-loop region and PPARGC1A between ADHD patients and controls and also among ADHD subtypes. The present study included 70 subjects with ADHD and 70 age- and gender-matched healthy controls (HCs). We measured the relative mtDNA copy number in peripheral blood cells using quantitative polymerase chain reaction (qPCR), and the methylation ratio was measured using methylation-specific PCR (MSP) after bisulfite conversion. The relative mtDNA copy number was significantly higher in ADHD patients than in HCs (p = 0.028). The mtDNA methylation ratio of PPARGC1A was decreased in ADHD patients compared with HCs (p = 0.008). After adjusting for IQ level, only the mtDNA copy number differed between the ADHD and HCs (p = 0.01). There was a significant difference in the methylation ratio of PPARGC1A among ADHD subtypes. These results suggest the possible involvement of mitochondrial dysfunction in the pathophysiology of ADHD. Further large cohort studies investigating the correlation between clinical markers and biomarkers of mitochondrial dysfunction are warranted.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea
| | - Soo-Young Lee
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, South Korea
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, South Korea
| | - Si Yeon Kim
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, South Korea
| | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, South Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Association of mitochondrial DNA 10398 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2017; 630:8-12. [PMID: 28793231 DOI: 10.1016/j.gene.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are subcellular organelles that contribute to aerobic ATP generation by oxidative phosphorylation (OXPHOS). Previous studies reported that mitochondrial dysfunction and deficiency caused by mitochondrial DNA polymorphisms is associated with various diseases. Especially, mitochondrial DNA 10398 A/G polymorphism is known to affect the regulation of mitochondrial calcium levels related to energy production, and its association with psychiatric disorders such as schizophrenia and bipolar disorder has been reported. However, there are no reports on the genetic relationship between mitochondrial DNA polymorphisms and ADHD. Thus, we evaluated the genetic association between 10398 A/G polymorphism and ADHD in the Korean children. Genotype frequency differences between the case and the control were assessed using Chi-square tests. Independent t-test was used to estimate the effects of genotype on Behavior Assessment System for Children (BASC-2) scales in ADHD children. Our results showed that mitochondrial DNA 10398 A/G polymorphism was significantly associated with the ADHD children (p<0.05). Stratified analyses for gender and subtypes showed a marginal trend toward significance (boys: p=0.059, and combined subtype: p=0.068, respectively). In the BASC-2 analysis, the 10398 A/G polymorphism was significantly associated with aggression behavior and leadership in ADHD boys (p<0.05). These findings suggest that the mitochondrial DNA 10398 A/G polymorphism play a possible role in the genetic etiology of ADHD in Korean children. Larger sample set and functional studies are necessary to further elucidation of our findings.
Collapse
|
5
|
Francis A, Pooja S, Rajender S, Govindaraj P, Tipirisetti NR, Surekha D, Rao DR, Rao L, Ramachandra L, Vishnupriya S, Ramalingam K, Satyamoorthy K, Thangaraj K. A mitochondrial DNA variant 10398G>A in breast cancer among South Indians: an original study with meta-analysis. Mitochondrion 2013; 13:559-65. [PMID: 23993954 DOI: 10.1016/j.mito.2013.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
The m.10398G>A polymorphism in the MT-ND3 gene has been linked to the manifestation of several neurodegenerative disorders and cancers. Several research groups have analyzed the association between m.10398G>A polymorphism and breast cancer; however, the results do not follow a consensus. We have studied this polymorphism in three Dravidian populations from South India. Analysis on 716 cases and 724 controls found no association between m.10398G>A polymorphism and breast cancer [OR = 0.916 (0.743-1.128); P = 0.409]. Menopausal stratification also revealed no significant association in either pre-menopausal or post-menopausal breast cancer groups. In addition, we undertook a meta-analysis on 16 study groups, comprising a total of 7202 cases and 7490 controls. The pooled odds ratio suggested no significant association of m.10398G>A substitution with breast cancer [OR = 1.016 (0.85-1.22); P = 0.86]. In conclusion, there is no evidence of association between m.10398G>A polymorphism and breast cancer risk among South Indian women. Meta-analysis suggested no overall correlation between this polymorphism and breast cancer risk.
Collapse
|
6
|
Orikabe L, Yamasue H, Inoue H, Takayanagi Y, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y, Kasai K. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr Res 2011; 132:183-9. [PMID: 21784619 DOI: 10.1016/j.schres.2011.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 01/08/2023]
Abstract
The similarity between psychotic symptoms in patients with schizophrenia such as hallucinations and delusions and those caused by administration of methamphetamine has been accepted. While the etiology of schizophrenia remains unclear, methamphetamine induced psychosis, which is obviously occurred by methamphetamine administration, had been widely considered as a human pharmaceutical model of exogenous psychosis. Although volume reductions in medial temporal lobe structure in patients with schizophrenia have repeatedly been reported, those in patients with methamphetamine psychosis have not yet been clarified. Magnetic resonance images (MRI) were obtained from 20 patients with methamphetamine psychosis and 20 age, sex, parental socio-economic background, and IQ matched healthy controls. A reliable manual tracing methodology was employed to measure the gray matter volume of the amygdala and the hippocampus from MRIs. Significant gray matter volume reductions of both the amygdala and hippocampus were found bilaterally in the subjects with methamphetamine psychosis compared with the controls. The degree of volume reduction was significantly greater in the amygdala than in hippocampus. While the total gray, white matter and intracranial volumes were also significantly smaller-than-normal in the patients; the regional gray matter volume reductions in these medial temporal structures remained statistically significant even after these global brain volumes being controlled. The prominent volume reduction in amygdala rather than that in hippocampus could be relatively specific characteristics of methamphetamine psychosis, since previous studies have shown significant volume reductions less frequently in amygdala than in hippocampus of the other psychosis such as schizophrenia.
Collapse
Affiliation(s)
- Lina Orikabe
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Inoue H, Yamasue H, Tochigi M, Abe O, Liu X, Kawamura Y, Takei K, Suga M, Yamada H, Rogers MA, Aoki S, Sasaki T, Kasai K. Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biol Psychiatry 2010; 68:1066-72. [PMID: 20832055 DOI: 10.1016/j.biopsych.2010.07.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies have suggested that oxytocin affects social cognition and behavior mediated by the oxytocin receptor (OXTR) in amygdala in humans as well as in experimental animals. Genetic studies have revealed a link between the OXTR gene and the susceptibility to autism spectrum disorders (ASD), especially in the social dysfunctional feature of ASD. METHODS We examined the relationship between amygdala volume measured with manual tracing methodology and seven single nucleotide polymorphisms and one haplotype-block in OXTR, which were previously reported to be associated with ASD, in 208 socially intact Japanese adults with no neuropsychiatric history or current diagnosis. RESULTS The rs2254298A allele of OXTR was significantly associated with larger bilateral amygdala volume. The rs2254298A allele effect on amygdala volume varied in proportion to the dose of this allele. The larger the number of rs2254298A alleles an individual had, the larger their amygdala volume. Such an association was not observed with hippocampal volume or with global brain volumes, including whole gray, white matter, and cerebrospinal-fluid space. Furthermore, two three-single nucleotide polymorphism haplotypes, including rs2254298G allele, showed significant associations with the smaller bilateral amygdala volume. CONCLUSIONS The present results suggest that OXTR might be associated with the susceptibility to ASD, especially in its aspects of social interaction and communication mediated by a modulation of amygdala development, one of the most distributed brain regions with high density of OXTR. Furthermore, amygdala volume measured with magnetic resonance imaging could be a useful intermediate phenotype to uncover the complex link between OXTR and social dysfunction in ASD.
Collapse
Affiliation(s)
- Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. Neuroimage 2010; 53:810-21. [PMID: 20156570 PMCID: PMC4502568 DOI: 10.1016/j.neuroimage.2010.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/17/2010] [Accepted: 02/09/2010] [Indexed: 12/15/2022] Open
Abstract
Mood disorders are highly heritable and have been linked to brain regions of emotion processing. Over the past few years, an enormous amount of imaging genetics studies has demonstrated the impact of risk genes on brain regions and systems of emotion processing in vivo in healthy subjects as well as in mood disorder patients. While sufficient evidence already exists for several monaminergic genes as well as for a few non-monoaminergic genes, such as brain-derived neurotrophic factor (BDNF) in healthy subjects, many others only have been investigated in single studies so far. Apart from these studies, the present review also covers imaging genetics studies applying more complex genetic disease models of mood disorders, such as epistasis and gene-environment interactions, and their impact on brain systems of emotion processing. This review attempts to provide a comprehensive overview of the rapidly growing field of imaging genetics studies in mood disorder research.
Collapse
Affiliation(s)
- Christian Scharinger
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ulrich Rabl
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Lukas Pezawas
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Inoue H, Yamasue H, Tochigi M, Suga M, Iwayama Y, Abe O, Yamada H, Rogers MA, Aoki S, Kato T, Sasaki T, Yoshikawa T, Kasai K. Functional (GT)n polymorphisms in promoter region ofN-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene affect hippocampal and amygdala volumes. GENES BRAIN AND BEHAVIOR 2010; 9:269-75. [DOI: 10.1111/j.1601-183x.2009.00557.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Inoue H, Yamasue H, Tochigi M, Takei K, Suga M, Abe O, Yamada H, Rogers MA, Aoki S, Sasaki T, Kasai K. Effect of tryptophan hydroxylase-2 gene variants on amygdalar and hippocampal volumes. Brain Res 2010; 1331:51-7. [PMID: 20331984 DOI: 10.1016/j.brainres.2010.03.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023]
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of serotonin (5-HT). Genetic variations in human TPH2, a newly identified isoform of TPH, have been shown to impact on enzymatic activity of TPH and to be associated with emotion-related personality traits and mood/anxiety disorders. Identification of an intermediate phenotype that bridges the relationship between genes and behavior may be of great importance in the further clarification of how hTPH2 contributes to emotional regulation. Previous studies have shown that a polymorphism in the upstream regulatory region of hTPH2 (SNP G-703T, rs4570625) correlates functional MRI response of the amygdala. In this study, we examined the effect of this genotype on amygdalar and hippocampal volumes in 208 mentally healthy individuals. To measure volumes of amygdala and hippocampus, gray matter regions of interest were outlined manually on three-dimensional MRI data obtained using a 1.5-T scanner. Additionally, personality traits were evaluated using the Temperament and Character Inventory (TCI). Those subjects with T allele carriers were associated with significantly smaller volumes in bilateral amygdala and hippocampus and higher reward dependence than those with G allele homozygotes. These results suggest that amygdalar and hippocampal volumes assessed using MRI may be a useful intermediate phenotype that will uncover the biological pathway linking 5-HT synthesis and emotional behaviors and affective disorders.
Collapse
Affiliation(s)
- Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|