Administration of an Intravenous Fat Emulsion Enriched with Medium-Chain Triglyceride/ω-3 Fatty Acids is Beneficial Towards Anti-Inflammatory Related Fatty Acid Profile in Preterm Neonates: A Randomized, Double-Blind Clinical Trial.
Nutrients 2020;
12:nu12113526. [PMID:
33207743 PMCID:
PMC7698253 DOI:
10.3390/nu12113526]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
Intravenous administration of pure soybean oil emulsions high in linoleic acid may lead to inflammation and lipid peroxidation in preterm neonates. We aimed to investigate the effects of a medium-chain triglyceride (MCT)/ω-3 polyunsaturated fatty acid (PUFA)-enriched intravenous fat emulsion (IVFE) on plasma fatty acid (FA) profile and serum interleukin-6 (IL-6) in preterm neonates. In this double-blind randomized study, 92 preterm neonates (gestational age < 32 weeks, birth weight < 1500 g) were assigned to receive either MCT/ω-3 PUFA-enriched IVFE (Intervention Group) or soybean oil-based IVFE (Control Group). Levels of FAs were measured at baseline (day 0) and day 15 of parenteral nutrition with gas-chromatography mass-spectrometry. Serum IL-6 was measured with sandwich ELISA in 59 neonates. Plasma FAs changed significantly over time; the MCT/ω-3 PUFA-IVFE group showed higher ω-3 PUFAs (p = 0.031), eicosapentaenoic acid (p = 0.000), and oleic acid (p = 0.003), and lower ω-6/ω-3 PUFAs ratio (p = 0.001) and ω-6 PUFAs (p = 0.023) compared to control group. Linoleic acid was higher in the soybean oil (SO)-based IVFE arm compared to the MCT/ω-3 PUFAs-IVFE arm (p = 0.006). Both fat emulsion types decreased IL-6 compared to baseline, but changes were insignificant between groups. Administration of MCT/ω-3 PUFA-enriched IVFE in preterm neonates is beneficial in changing the FA profile consistent with attenuated inflammatory response.
Collapse