1
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
2
|
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Vet Sci 2023; 158:185-195. [PMID: 37030094 DOI: 10.1016/j.rvsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and 12 family members have been documented in the literature. In recent years, new insights have been gained into the structure and function of FABPs, which are important regulators of lipid metabolic processes in the body and play a central role in coordinating lipid transport and metabolism in various tissues and organs across species. This paper provides a brief overview of the structure and biological functions of FABPs and reviews related studies on lipid metabolism in livestock and poultry to lay the foundation for research on the mechanism underlying the regulatory effect of FABPs on lipid metabolism in livestock and poultry and for the genetic improvement of livestock and poultry.
Collapse
Affiliation(s)
- Chuanchuan Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tong Mu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
3
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
4
|
Hayashi H, Yamakado M, Yamaguchi M, Kozakai T. Leptin and ghrelin expressions in the gastrointestinal tracts of calves and cows. J Vet Med Sci 2020; 82:475-478. [PMID: 32092743 PMCID: PMC7192723 DOI: 10.1292/jvms.19-0680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study aims to investigate and compare the expressions of leptin and ghrelin in the
gastrointestinal tracts of calves and cows. The mRNA expression of leptin in the rumen,
abomasum, and jejunum of calves was significantly higher than that in cows. In both calves
and cows, abomasum ghrelin mRNA expression was significantly higher than that in other
gastrointestinal tracts. In calves, leptin protein expression in the abomasum was the
highest. In addition, leptin protein expression in the abomasum and jejunum of calves was
significantly higher than that in cows. Results indicated that leptin in the abomasum and
jejunum plays an important role during the suckling period in a ruminant.
Collapse
Affiliation(s)
- Hideaki Hayashi
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Mutsumi Yamakado
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Mana Yamaguchi
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Takaharu Kozakai
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Sapporo, Hokkaido 062-8555, Japan.,Faculty of Education, Art, and Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata 990-8560, Japan
| |
Collapse
|
5
|
Mosińska P, Jacenik D, Sałaga M, Wasilewski A, Cygankiewicz A, Sibaev A, Mokrowiecka A, Małecka-Panas E, Pintelon I, Storr M, Timmermans JP, Krajewska WM, Fichna J. FABP4 blocker attenuates colonic hypomotility and modulates white adipose tissue-derived hormone levels in mouse models mimicking constipation-predominant IBS. Neurogastroenterol Motil 2018; 30:e13272. [PMID: 29266569 DOI: 10.1111/nmo.13272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues. METHODS Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation. Intracellular recordings were made to examine the effects of BMS309403 on colonic excitatory and inhibitory junction potentials. Abdominal pain was evaluated using behavioral pain response. Localization and expression of selected adipokines were determined in the mouse colon and serum using immunohistochemistry and Enzyme-Linked ImmunoSorbent Assay respectively. mRNA expression of FABP4 and selected adipokines in colonic and serum samples from irritable bowel syndrome (IBS) patients and control group were assessed. KEY RESULTS Acute injection of BMS309403 significantly increased GI motility and reversed inhibitory effect of loperamide. BMS309403 did not change colonic membrane potentials. Chronic treatment with BMS309403 increased the number of pain-induced behaviors. In the mouse serum, level of resistin was significantly decreased after acute administration; no changes in adiponectin level were detected. In the human serum, level of adiponectin and resistin, but not of FABP4, were significantly elevated in patients with constipation-IBS (IBS-C). FABP4 mRNA expression was significantly downregulated in the human colon in IBS-C. CONCLUSIONS AND INFERENCES Fatty acid binding protein 4 may be involved in IBS pathogenesis and become a novel target in the treatment of constipation-related diseases.
Collapse
Affiliation(s)
- P Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - D Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - M Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A Wasilewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - A Sibaev
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - A Mokrowiecka
- Department of Digestive Tract Disease, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - E Małecka-Panas
- Department of Digestive Tract Disease, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - I Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - M Storr
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich, Germany.,Center of Endoscopy, Stanberg, Germany
| | - J P Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - W M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Histological organization of intestinal villi in the crocodilian caiman yacare (Daudin, 1802) during dietary lipid absorption. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Weikard R, Kühn C. Different milk diets have substantial effects on the jejunal mucosal immune system of pre-weaning calves, as demonstrated by whole transcriptome sequencing. Sci Rep 2018; 8:1693. [PMID: 29374218 PMCID: PMC5785999 DOI: 10.1038/s41598-018-19954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that nutrition during early mammalian life has a strong influence on health and performance in later life. However, there are conflicting data concerning the appropriate milk diet. This discrepancy particularly applies to ruminants, a group of mammals that switch from monogastric status to rumination during weaning. Little is known regarding how the whole genome expression pattern in the juvenile ruminant gut is affected by alternative milk diets. Thus, we performed a next-generation-sequencing-based holistic whole transcriptome analysis of the jejunum in male pre-weaned German Holstein calves fed diets with restricted or unlimited access to milk during the first 8 weeks of life. Both groups were provided hay and concentrate ad libitum. The analysis of jejunal mucosa samples collected 80 days after birth and four weeks after the end of the feeding regimes revealed 275 differentially expressed loci. While the differentially expressed loci comprised 67 genes encoding proteins relevant to metabolism or metabolic adaptation, the most distinct difference between the two groups was the consistently lower activation of the immune system in calves that experienced restricted milk access compared to calves fed milk ad libitum. In conclusion, different early life milk diets had significant prolonged effects on the intestinal immune system.
Collapse
Affiliation(s)
- H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - D Frieten
- University of Applied Sciences, Bingen, Germany
| | - C Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - G Dusel
- University of Applied Sciences, Bingen, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany. .,University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|