1
|
Kawasaki H, Hariyama T, Kosugi I, Meguro S, Iwata F, Shimizu K, Magata Y, Iwashita T. Human induced pluripotent stem cells are resistant to human cytomegalovirus infection primarily at the attachment level due to the reduced expression of cell-surface heparan sulfate. J Virol 2024; 98:e0127823. [PMID: 38345384 PMCID: PMC10949504 DOI: 10.1128/jvi.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
Cytomegalovirus (CMV), a type of herpes virus, is the predominant cause of congenital anomalies due to intrauterine infections in humans. Adverse outcomes related to intrauterine infections with human cytomegalovirus (HCMV) vary widely, depending on factors such as fetal infection timing, infection route, and viral virulence. The precise mechanism underlying HCMV susceptibility remains unclear. In this study, we compared the susceptibility of neonatal human dermal fibroblast cells (NHDFCs) and human induced pluripotent stem cells (hiPSCs) derived from NHDFCs, which are genetically identical to HCMV, using immunostaining, microarray, in situ hybridization, quantitative PCR, and scanning electron microscopy. These cells were previously used to compare CMV susceptibility, but the underlying mechanisms were not fully elucidated. HCMV susceptibility of hiPSCs was significantly lower in the earliest phase. No shared gene ontologies were observed immediately post-infection between the two cell types using microarray analysis. Early-stage expression of HCMV antigens and the HCMV genome was minimal in immunostaining and in in situ hybridization in hiPSCs. This strongly suggests that HCMV does not readily bind to hiPSC surfaces. Scanning electron microscopy performed using the NanoSuit method confirmed the scarcity of HCMV particles on hiPSC surfaces. The zeta potential and charge mapping of the charged surface in NHDFCs and hiPSCs exhibited minimal differences when assessed using zeta potential analyzer and scanning ion conductance microscopy; however, the expression of heparan sulfate (HS) was significantly lower in hiPSCs compared with that in NHDFCs. Thus, HS expression could be a primary determinant of HCMV resistance in hiPSCs at the attachment level. IMPORTANCE Numerous factors such as attachment, virus particle entry, transcription, and virus particle egress can affect viral susceptibility. Since 1984, pluripotent cells are known to be CMV resistant; however, the exact mechanism underlying this resistance remains elusive. Some researchers suggest inhibition in the initial phase of HCMV binding, while others have suggested the possibility of a sufficient amount of HCMV entering the cells to establish latency. This study demonstrates that HCMV particles rarely attach to the surfaces of hiPSCs. This is not due to limitations in the electrostatic interactions between the surface of hiPSCs and HCMV particles, but due to HS expression. Therefore, HS expression should be recognized as a key factor in determining the susceptibility of HCMV in congenital infection in vitro and in vivo. In the future, drugs targeting HS may become crucial for the treatment of congenital CMV infections. Thus, further research in this area is warranted.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Futoshi Iwata
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Kosuke Shimizu
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
2
|
Li Q, Chen Y, Feng W, Cai J, Gao J, Ge F, Zhou T, Wang Z, Ding F, Marshall C, Sheng C, Zhang Y, Sun M, Shi J, Xiao M. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav Immun 2022; 103:85-96. [PMID: 35427759 DOI: 10.1016/j.bbi.2022.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022] Open
Abstract
Recent progress on the central lymphatic system has greatly increased our understanding of how the brain maintains its own waste homeostasis. Here, we showed that perivascular spaces and meningeal lymphatic vessels form a functional route for clearance of senescent astrocytes from the aging brain. Blocking meningeal lymphatic drainage by ligation of the deep cervical lymph nodes impaired clearance of senescent astrocytes from brain parenchyma, subsequently increasing neuroinflammation in aged mice. By contrast, enhancing meningeal lymphatic vessel diameter by a recombinant adeno-associated virus encoding mouse vascular endothelial growth factor-C (VEGF-C) improved clearance of senescent astrocytes and mitigated neuroinflammation. Mechanistically, VEGF-C was highly expressed in senescent astrocytes, contributing themselves to migrate across lymphatic vessels along C-C motif chemokine ligand 21 (CCL21) gradient by interacting with VEGF receptor 3. Moreover, intra-cisternal injection of antibody against CCL21 hampered senescent astrocytes into the lymphatic vessels and exacerbated short memory defects of aged mice. Together, these findings reveal a new perspective for the meningeal lymphatics in the removal of senescent astrocytes, thus offering a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Ge
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiantian Zhou
- Department of Anesthesia, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210028, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Yongjie Zhang
- Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- Department of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Kawasaki H, Kosugi I, Meguro S, Iwashita T. Pathogenesis of developmental anomalies of the central nervous system induced by congenital cytomegalovirus infection. Pathol Int 2017; 67:72-82. [PMID: 28074532 DOI: 10.1111/pin.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
Abstract
In humans, the herpes virus family member cytomegalovirus (CMV) is the most prevalent mediator of intrauterine infection-induced congenital defect. Central nervous system (CNS) dysfunction is a distinguishing symptom of CMV infection, and characterized by ventriculoencephalitis and microglial nodular encephalitis. Reports on the initial distribution of CMV particles and its receptors on the blood brain barrier (BBB) are rare. Nevertheless, several factors are suggested to affect CMV etiology. Viral particle size is the primary factor in determining the pattern of CNS infections, followed by the expression of integrin β1 in endothelial cells, pericytes, meninges, choroid plexus, and neural stem progenitor cells (NSPCs), which are the primary targets of CMV infection. After initial infection, CMV disrupts BBB structural integrity to facilitate the spread of viral particles into parenchyma. Then, the initial meningitis and vasculitis eventually reaches NSPC-dense areas such as ventricular zone and subventricular zone, where viral infection inhibits NSPC proliferation and differentiation and results in neuronal cell loss. These cellular events clinically manifest as brain malformations such as a microcephaly. The purpose of this review is to clearly delineate the pathophysiological basis of congenital CNS anomalies caused by CMV.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Meguro
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant 2015; 24:471-85. [PMID: 25706819 DOI: 10.3727/096368915x686931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a complicated disease with varying causes and outcomes. It has created significant burden to both affected families and societies, not to mention the quality of life of the patients themselves. There is no cure for the disease; therefore, development of effective therapeutic strategies is in great demand. Recent advances in regenerative medicine suggest that the transplantation of stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, induced pluripotent stem cells, umbilical cord blood cells, and human embryonic germ cells, focusing on the root of the problem, may provide the possibility of developing a complete cure in treating CP. However, safety is the first factor to be considered because some stem cells may cause tumorigenesis. Additionally, more preclinical and clinical studies are needed to determine the type of cells, route of delivery, cell dose, timing of transplantation, and combinatorial strategies to achieve an optimal outcome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|