1
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
2
|
Wethekam LC, Moore JK. α-tubulin regulation by 5' introns in Saccharomyces cerevisiae. Genetics 2023; 225:iyad163. [PMID: 37675603 PMCID: PMC10697811 DOI: 10.1093/genetics/iyad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
Across eukaryotic genomes, multiple α- and β-tubulin genes require regulation to ensure sufficient production of tubulin heterodimers. Features within these gene families that regulate expression remain underexplored. Here, we investigate the role of the 5' intron in regulating α-tubulin expression in Saccharomyces cerevisiae. We find that the intron in the α-tubulin, TUB1, promotes α-tubulin expression and cell fitness during microtubule stress. The role of the TUB1 intron depends on proximity to the TUB1 promoter and sequence features that are distinct from the intron in the alternative α-tubulin isotype, TUB3. These results lead us to perform a screen to identify genes that act with the TUB1 intron. We identified several genes involved in chromatin remodeling, α/β-tubulin heterodimer assembly, and the spindle assembly checkpoint. We propose a model where the TUB1 intron promotes expression from the chromosomal locus and that this may represent a conserved mechanism for tubulin regulation under conditions that require high levels of tubulin production.
Collapse
Affiliation(s)
- Linnea C Wethekam
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Giri P, Batra PJ, Kumari A, Hura N, Adhikary R, Acharya A, Guchhait SK, Panda D. Development of QTMP: A promising anticancer agent through NP-Privileged Motif-Driven structural modulation. Bioorg Med Chem 2023; 95:117489. [PMID: 37816266 DOI: 10.1016/j.bmc.2023.117489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
In this study of creating new molecules from clinical trial agents, an approach of Combretastatin structural modulation with the installation of NP-privileged motifs was considered, and a series of trimethoxyphenyl-2-aminoimidazole with functionalized quinolines and isoquinolines was investigated. An exciting method of quinoline C3-H iodination coupled with imidazopyridine-C3-H arylation and hydrazine-mediated fused-ring cleavage enabled synthesizing a class of compounds with two specific unsymmetric aryl substitutions. Interestingly, three compounds (6, 11, and 13) strongly inhibited HeLa cell proliferation with a half-maximal inhibitory concentration (10-46 nM). Among the compounds, compound 6 (QTMP) showed stronger antiproliferative ability than CA-4 (a clinical trial agent) in various cancer cell lines, including cervical, lung, breast, highly metastatic breast, and melanoma cells. QTMP inhibited the assembly of purified tubulin, depolymerized microtubules of A549 lung carcinoma cells, produced defective spindles, and arrested the cells in the G2/M phase. Further, QTMP binds to the colchicine site in tubulin with a dissociation constant of 5.0 ± 0.6 µM. QTMP displayed higher aqueous stability than CA-4 at 37 °C. Further, in silico analysis of QTMP indicated excellent drug-like properties, including good aqueous solubility, balanced hydrophilicity-lipophilicity, and high GI-absorption ability. The results together suggest that QTMP has anticancer potential.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Pooja J Batra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neha Hura
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Rishav Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Sankar Kumar Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India; National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Parmar S, Gonzalez SJ, Heckel JM, Mukherjee S, McClellan M, Clarke DJ, Johansson M, Tank D, Geisness A, Wood DK, Gardner MK. Robust microtubule dynamics facilitate low-tension kinetochore detachment in metaphase. J Cell Biol 2023; 222:e202202085. [PMID: 37166419 PMCID: PMC10182774 DOI: 10.1083/jcb.202202085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
During mitosis, sister chromatids are stretched apart at their centromeres via their attachment to oppositely oriented kinetochore microtubules. This stretching generates inwardly directed tension across the separated sister centromeres. The cell leverages this tension signal to detect and then correct potential errors in chromosome segregation, via a mechanical tension signaling pathway that detaches improperly attached kinetochores from their microtubules. However, the sequence of events leading up to these detachment events remains unknown. In this study, we used microfluidics to sustain and observe low-tension budding yeast metaphase spindles over multiple hours, allowing us to elucidate the tension history prior to a detachment event. We found that, under conditions in which kinetochore phosphorylation weakens low-tension kinetochore-microtubule connections, the mechanical forces produced via the dynamic growth and shortening of microtubules is required to efficiently facilitate detachment events. Our findings underscore the critical role of robust kinetochore microtubule dynamics in ensuring the fidelity of chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samuel J. Gonzalez
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Julia M. Heckel
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Marnie Johansson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Athena Geisness
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Melissa K. Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Shi M, Xue SY, Peng GW, Xu JK, Gao YS, Liu SW, Duan XM, Lu LM. Electrochemical determination of benomyl using MWCNTs interspersed graphdiyne as enhanced electrocatalyst. Mikrochim Acta 2023; 190:98. [PMID: 36806988 DOI: 10.1007/s00604-023-05684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Graphdiyne (GDY) has attracted a lot of interest in electrochemical sensing application with the advantages of a large conjugation system, porous structure, and high structure defects. Herein, to further improve the sensing effect of GDY, conductive MWCNTs were chosen as the signal accelerator. To get a stable composite material, polydopamine (PDA) was employed as connecting bridge between GDY and MWCNTs-NH2, where DA was firstly polymerized onto GDY, followed by covalently linking MWCNTs-NH2 with PDA through Michael-type reaction. The formed GDY@PDA/MWCNTs-NH2 composite was then explored as an electrochemical sensor for benomyl (Ben) determination. GDY assists the adsorption and accumulation of Ben molecules to the sensing surface, while MWCNTs-NH2 can enhance the electrical conductivity and electrocatalytic activity, all of which contributing to the significantly improved performance. The proposed sensor displays an obvious oxidation peak at 0.72 V (vs. Hg|Hg2Cl2) and reveals a wide linear range from 0.007 to 10.0 µM and a low limit of detection (LOD) of 1.8 nM (S/N = 3) toward Ben detection. In addition, the sensor shows high stability, repeatability, reproducibility, and selectivity. The feasibility of this sensor was demonstrated by detecting Ben in apple and cucumber samples with a recovery of 94-106% and relative standard deviations (RSDs) less than 2.3% (n = 5). A sensitive electrochemical sensing platform was reported for benomyl (Ben) determination based on a highly stable GDY@PDA/MWCNTs-NH2 composite.
Collapse
Affiliation(s)
- Min Shi
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shu-Ya Xue
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Guan-Wei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jing-Kun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Yan-Sha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shu-Wu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xue-Min Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Li-Min Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
6
|
Sebastian J, Raghav D, Rathinasamy K. MD simulation-based screening approach identified tolvaptan as a potential inhibitor of Eg5. Mol Divers 2022:10.1007/s11030-022-10482-w. [DOI: 10.1007/s11030-022-10482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
|
7
|
Zhong W, Zou J, Xie Y, Yang J, Li M, Liu S, Gao Y, Wang X, Lu L. Three-dimensional nano-CuxO-MWCNTs-COOH/MXene heterostructure: an efficient electrochemical platform for highly sensitive and selective sensing of benomyl in fruit samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Cytotoxic mechanism of tioconazole involves cell cycle arrest at mitosis through inhibition of microtubule assembly. Cytotechnology 2022; 74:141-162. [PMID: 35185291 PMCID: PMC8816991 DOI: 10.1007/s10616-021-00516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
Tioconazole is one of the drugs used to treat topical mycotic infections. It exhibited severe toxicity during systemic administration; however, the molecular mechanism behind the cytotoxic effect was not well established. We employed HeLa cells as a model to investigate the molecular mechanism of its toxicity and discovered that tioconazole inhibited HeLa cell growth through mitotic block (37%). At the half-maximal inhibitory concentration (≈ 15 μM) tioconazole apparently depolymerized microtubules and caused defects in chromosomal congression at the metaphase plate. Tioconazole induced apoptosis and significantly hindered the migration of HeLa cells. Tioconazole bound to goat brain tubulin (K d, 28.3 ± 0.5 μM) and inhibited the assembly of microtubules in the in vitro assays. We report for the first time that tioconazole binds near to the colchicine site, based on the evidence from in vitro tubulin competition experiment and computational analysis. The conformation of tubulin dimer was found to be "curved" upon binding with tioconazole in the MD simulation. Tioconazole in combination with vinblastine synergistically inhibited the growth of HeLa cells and augmented the percentage of mitotic block by synergistically inhibiting the assembly of microtubules. Our study indicates that the systemic adverse effects of tioconazole are partly due to its effects on microtubules and cell cycle arrest. Since tioconazole is well tolerated at the topical level, it could be developed as a topical anticancer agent in combination with other systemic anticancer drugs. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00516-w.
Collapse
|
9
|
Ashraf SM, Mahanty S, Rathinasamy K. Securinine induces mitotic block in cancer cells by binding to tubulin and inhibiting microtubule assembly: A possible mechanistic basis for its anticancer activity. Life Sci 2021; 287:120105. [PMID: 34756929 DOI: 10.1016/j.lfs.2021.120105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
AIM Analysis of the anticancer and antimitotic activity of the plant derived alkaloid securinine along with its effect on the organization of cellular microtubules as well as its binding with purified goat brain tubulin in-vitro. MATERIALS AND METHODS The cytotoxicity of securinine on different cell lines was conducted using SRB assay. The effect of securinine on the cellular microtubules was analyzed using immunofluorescence microscopy. The binding of securinine on purified goat brain tubulin was evaluated using fluorescent spectroscopy. KEY FINDINGS Securinine effectively prevented the proliferation of cervical, breast and lung cancer cells with an IC50 of 6, 10 and 11 μM respectively and induced minimal toxicity in HEK cell line. Securinine at concentrations higher than IC50 induced significant depolymerization in interphase and mitotic microtubules and it suppressed the reassembly of cold depolymerized spindle microtubules in HeLa cells. In the wound healing assay, securinine effectively suppressed the migration of HeLa cells to close the wound. Securinine bound to tubulin with a Kd of 9.7 μM and inhibited the assembly of tubulin into microtubules. The treatment with securinine induced a mitochondrial dependent ROS response in HeLa cells which enhanced the cytotoxic effect of securinine. The result from gene expression studies indicates that securinine induced apoptosis in MCF-7 cells through p53 dependent pathway. SIGNIFICANCE Considering the strong anticancer and anti-metastatic property and low toxicity in non-malignant cell lines, we suggest that securinine can be used as a chemotherapeutic drug either alone or in combination with other known anticancer molecules.
Collapse
Affiliation(s)
- Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
10
|
Vanadocene dichloride induces apoptosis in HeLa cells through depolymerization of microtubules and inhibition of Eg5. J Biol Inorg Chem 2021; 26:511-531. [PMID: 34057639 DOI: 10.1007/s00775-021-01872-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Vanadocene dichloride (VDC), a vanadium containing metallocene dihalide exhibits promising anticancer activity. However, its mechanism of action remains elusive as several diverse targets and pathways have been proposed for its anticancer activity. In this study, we observed that VDC inhibited the proliferation of mammalian cancer cells and induced apoptotic cell death by altering the mitochondrial membrane potential and the expression of bcl2 and bax. Probing further into its anticancer mechanism, we found that VDC caused depolymerization of interphase microtubules and blocked the cells at mitosis with considerable proportion of cells exhibiting monopolar spindles. The reassembly of cold depolymerized microtubules was strongly inhibited in the presence of 10 μM VDC. VDC perturbed the microtubule-kinetochore interactions during mitosis as indicated by the absence of cold stable spindle microtubules in the cells treated with 20 μM VDC. Using goat brain tubulin, we found that VDC inhibited the steady-state polymer mass of microtubules and bound to tubulin at a novel site with a Kd of 9.71 ± 0.19 μM and perturbed the secondary structure of tubulin dimer. In addition, VDC was also found to bind to the mitotic kinesin Eg5 and inhibit its basal as well as microtubule stimulated ATPase activity. The results suggest that disruption of microtubule assembly dynamics and inhibition of the ATPase activity of Eg5 could be a plausible mechanism for the antiproliferative and antimitotic activity of VDC.Graphic abstract.
Collapse
|
11
|
Benomyl induced oxidative stress related DNA damage and apoptosis in H9c2 cardiomyoblast cells. Toxicol In Vitro 2021; 75:105180. [PMID: 33930522 DOI: 10.1016/j.tiv.2021.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Benomyl, benzimidazole group pesticide, has been prohibited in Europe and USA since 2003 due to its toxic effects and it has been still determined as food and environmental contaminant. In the present study, the toxic effect mechanisms of benomyl were evaluated in rat cardiomyoblast (H9c2) cells. Cytotoxicity was determined by MTT and NRU assay and, oxidative stress potential was evaluated by reactive oxygen species (ROS) production and glutathione levels. DNA damage was assessed by alkaline comet assay. Relative expressions of apoptosis related genes were evaluated; furthermore, NF-κB and JNK protein levels were determined. At 4 μM concentration (at which cell viability was >70%), benomyl increased 2-fold of ROS production level and 2-fold of apoptosis as well as DNA damage. Benomyl down-regulated miR21, TNF-α and Akt1 ≥ 48.75 and ≥ 97.90; respectively. PTEN, JNK and NF-κB expressions were upregulated. The dramatic changes in JNK and NF-κB expression levels were not observed in protein levels. These findings showed the oxidative stress related DNA damage and apoptosis in cardiomyoblast cells exposed to benomyl. However, further mechanistic and in vivo studies are needed to understand the cardiotoxic effects of benomyl and benzimidazol fungucides.
Collapse
|
12
|
Sebastian J, Rathinasamy K. Sertaconazole induced toxicity in HeLa cells through mitotic arrest and inhibition of microtubule assembly. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1231-1249. [PMID: 33620548 DOI: 10.1007/s00210-021-02059-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
Econazole, miconazole, and sertaconazole, the structurally related azoles with imidazole moiety, were evaluated for their cytotoxicity and their ability to bind to mammalian tubulin. Our results indicated that sertaconazole and econazole bound to goat brain tubulin with a dissociation constant of 9 and 19 μM respectively, while miconazole did not bind to goat brain tubulin. Econazole, miconazole, and sertaconazole inhibited the proliferation of HeLa cells with an IC50 of 28, 98, and 38 μM respectively with sertaconazole alone inducing a mitotic block in the treated cells. Since sertaconazole bound to goat brain tubulin with higher affinity and blocked the cells at mitosis, we hypothesized that its cytotoxic mechanism might involve inhibition of tubulin and econazole which did not block the cells at mitosis may have additional targets than tubulin. Sertaconazole inhibited the polymerization of tubulin in HeLa cells and the in vitro assembled goat brain tubulin. Competitive tubulin-binding assay using colchicine and computational simulation studies showed that sertaconazole bound closer to the colchicine site and induced the tubulin dimer to adopt a "bent" conformation which is incompetent for the polymerization. Results from RT-PCR analysis of the A549 cells treated with sertaconazole indicated activation of apoptosis. Sertaconazole significantly inhibited the migration of HeLa cells and showed synergistic antiproliferative potential with vinblastine. Collectively, the results suggest that sertaconazole which is already in clinical practice could be useful as a topical chemotherapy agent for the treatment of skin cancers in combination with other systemic anticancer agents.
Collapse
Affiliation(s)
- Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
13
|
Kara M, Oztas E, Ramazanoğulları R, Kouretas D, Nepka C, Tsatsakis AM, Veskoukis AS. Benomyl, a benzimidazole fungicide, induces oxidative stress and apoptosis in neural cells. Toxicol Rep 2020; 7:501-509. [PMID: 32337162 PMCID: PMC7175046 DOI: 10.1016/j.toxrep.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Fungicides are used in the agricultural sector against the harmful action of fungi, however they are potential toxic agents for the environment and the living organisms. Benomyl is a widely encountered benzimidazole fungicide that exerts its toxicity via inhibiting microtubule formation in the nervous system and the male reproductive and endocrine systems, whilst it is a known teratogen. Since toxic effects of benomyl and its molecular mechanisms are not fully understood, we aimed to detect its neurotoxic potential via evaluating cytotoxicity, oxidative stress and apoptosis in SH-SY5Y cell line. The cells were incubated with benomyl in a concentration range between 1 and 6 μM for 24 h. Our results indicated a concentration-dependent enhancement of reactive oxygen species measured through flow cytometry and DNA damage evaluated via the comet assay. Additionally, it induced apoptosis in all tested concentrations. According to the findings of the present study, benomyl is a xenobiotic, which it appears to exert its toxic action via a redox-related mechanism that, finally, induces cell apoptosis and death. We believe that this study will offer further insight in the toxicity mechanism of benomyl, although further studies are recommended in order to elucidate these mechanisms in the molecular level.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Apoptosis
- BSA, Bovine serum albumin
- Benomyl
- DMEM-F12, Dulbecco’s modified Eagle medium: Nutrient Mixture F-12 (Ham`s)
- DNA, Deoxyribonucleic acid
- DTNB, 55′-dithiobis-2-nitrobenzoic acid
- FBS, Fetal bovine serum
- GSH, Glutathione
- H2DCF-DA, 2′7′-dichlorodihydrofluorescein diacetate
- MFI, Median fluorescence intensity
- MTT, 3-45-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- Neural SH-SY5Y cell line
- OD, Optical density
- Oxidative stress
- PBS, Phosphate buffered saline
- PI, Propidium iodide
- ROS, Reactive oxygen species
- SD, Standard deviation
Collapse
Affiliation(s)
- Mehtap Kara
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, 34116, Istanbul, Turkey
- Corresponding author.
| | - Ezgi Oztas
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, 34116, Istanbul, Turkey
| | - Rabia Ramazanoğulları
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, 34116, Istanbul, Turkey
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
- Corresponding author.
| |
Collapse
|
14
|
Kumari A, Srivastava S, Manne RK, Sisodiya S, Santra MK, Guchhait SK, Panda D. C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubules. Biochem Pharmacol 2019; 170:113663. [PMID: 31606408 DOI: 10.1016/j.bcp.2019.113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Combretastatin A4 and its analogs are undergoing various clinical trials for the treatment of different cancers. This study illustrated the molecular mechanism and antitumor activity of C12, (5-Quinolin-3-yl and 4-(3,4,5-trimethoxyphenyl) substituted imidazol-2-amine), a synthetic analog of CA-4. C12 reduced the tumor volume of MCF-7 xenograft in NOD-SCID mice without affecting the bodyweight of the mice. Further, C12 inhibited the proliferation of several types of cancer cells more efficiently than their noncancerous counterparts. Using GFP-EB1 imaging, the effects of C12 on the interphase microtubule dynamics were determined in live HeLa cells. C12 (10 nM, half-maximal proliferation inhibitory concentration) reduced the growth rate of microtubules by 52% and increased the pause time of microtubules by 68%. In addition, fluorescence recovery after photobleaching analysis demonstrated that 10 nM C12 strongly suppressed spindle microtubule dynamics in HeLa cells. C12 treatment reduced the interpolar distance between the two spindle poles, increased the chromosome congression index, inhibited chromosome movement, and increased the level of mitotic checkpoint complex proteins BubR1 and Mad2. The evidence presented here indicated that C12 could induce different modes of cell death, depending on the extent of microtubule depolymerization. Since C12 targets both the mitotic and non-mitotic cells and showed a stronger activity against cancerous cells than non-cancerous cells, it may have an advantage in cancer chemotherapy. The results significantly enhance our understanding of the antitumor mechanism of the microtubule-depolymerizing agents.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajesh K Manne
- National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra 411007, India
| | - Shailendra Sisodiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab 160062, India
| | - Manas K Santra
- National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra 411007, India.
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab 160062, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
15
|
Sebastian J, Rathinasamy K. Benserazide Perturbs Kif15‐kinesin Binding Protein Interaction with Prolonged Metaphase and Defects in Chromosomal Congression: A Study Based on
in silico
Modeling and Cell Culture. Mol Inform 2019; 39:e1900035. [DOI: 10.1002/minf.201900035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/12/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jomon Sebastian
- School of BiotechnologyNational Institute of Technology Calicut Calicut-673601 India
| | - Krishnan Rathinasamy
- School of BiotechnologyNational Institute of Technology Calicut Calicut-673601 India
| |
Collapse
|
16
|
Ashraf SM, Sebastian J, Rathinasamy K. Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 2018; 52:e12558. [PMID: 30525278 PMCID: PMC6496756 DOI: 10.1111/cpr.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/19/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives The aim of this study was to elucidate the antimitotic mechanism of zerumbone and to investigate its effect on the HeLa cells in combination with other mitotic blockers. Materials and methods HeLa cells and fluorescence microscopy were used to analyse the effect of zerumbone on cancer cell lines. Cellular internalization of zerumbone was investigated using FITC‐labelled zerumbone. The interaction of zerumbone with tubulin was characterized using fluorescence spectroscopy. The Chou and Talalay equation was used to calculate the combination index. Results Zerumbone selectively inhibited the proliferation of HeLa cells with an IC50 of 14.2 ± 0.5 μmol/L through enhanced cellular uptake compared to the normal cell line L929. It induced a strong mitotic block with cells exhibiting bipolar spindles at the IC50 and monopolar spindles at 30 μmol/L. Docking analysis indicated that tubulin is the principal target of zerumbone. In vitro studies indicated that it bound to goat brain tubulin with a Kd of 4 μmol/L and disrupted the assembly of tubulin into microtubules. Zerumbone and colchicine had partially overlapping binding site on tubulin. Zerumbone synergistically enhanced the anti‐proliferative activity of vinblastine and paclitaxel through augmented mitotic block. Conclusion Our data suggest that disruption of microtubule assembly dynamics is one of the mechanisms of the anti‐cancer activity of zerumbone and it can be used in combination therapy targeting cell division.
Collapse
Affiliation(s)
- Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
17
|
Naaz A, Ahad S, Rai A, Surolia A, Panda D. BubR1 depletion delays apoptosis in the microtubule-depolymerized cells. Biochem Pharmacol 2018; 162:177-190. [PMID: 30468712 DOI: 10.1016/j.bcp.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
We investigated the role of a spindle assembly checkpoint protein, BubR1, in determining the mechanism of cell killing of an anti-microtubule agent CXI-benzo-84. CXI-benzo-84 dampened microtubule dynamics in live MCF-7 cells. The compound arrested MCF-7 cells in mitosis and induced apoptosis in these cells. Though CXI-benzo-84 efficiently depolymerized microtubules in the BubR1-depleted MCF-7 cells, it did not arrest the BubR1-depleted cells at mitosis. Interestingly, apoptosis occurred in the BubR1-depleted MCF-7 cells in the absence of a mitotic block suggesting that the mitotic block is not a prerequisite for the induction of apoptosis by anti-microtubule agents. In the presence of CXI-Benzo-84, the level of apoptosis was initially found to be lesser in the BubR1-depleted MCF-7 cells than the control cells; however, the BubR1-depleted cells displayed a similar level of apoptosis as the control cells at 72 h of drug treatment. The depletion of BubR1 enhanced DNA damage in MCF-7 cells upon microtubule depolymerization. In addition, CXI-benzo-84 in combination with cisplatin induced more cell death in BubR1-depleted cells than the BubR1-expressing MCF-7 cells. The results indicated a possibility that the BubR1-compromised cancer patients can be treated with combination therapy.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shazia Ahad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
18
|
Wang LL, Lee KT, Jung KW, Lee DG, Bahn YS. The novel microtubule-associated CAP-glycine protein Cgp1 governs growth, differentiation, and virulence of Cryptococcus neoformans. Virulence 2018; 9:566-584. [PMID: 29338542 PMCID: PMC5955475 DOI: 10.1080/21505594.2017.1423189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microtubules are involved in mechanical support, cytoplasmic organization, and several cellular processes by interacting with diverse microtubule-associated proteins such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A number of the cytoskeleton-associated proteins (CAPs) contain the CAP-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate the function of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which is a global cause of fatal meningoencephalitis in immunocompromised patients. In this study, we identified five CAP-Gly protein-encoding genes in C. neoformans. Among these, Cgp1 encoded by CNAG_06352 has a unique domain structure containing CAP-Gly, SPEC, and Spc7 domains that is not orthologous to CAPs in other eukaryotes. Supporting the role of Cgp1 in microtubule-related function, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer and that Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular function of microtubules, Cgp1 governs the maintenance of membrane stability and genotoxic stress responses. Deletion of CGP1 also reduces production of melanin pigment and attenuates the virulence of C. neoformans. Furthermore, we demonstrate that Cgp1 uniquely regulates the sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Domain analysis revealed that the CAP-Gly domain plays a major role in all Cgp1 functions examined. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation, and virulence in C. neoformans.
Collapse
Affiliation(s)
- Li Li Wang
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Kyung-Tae Lee
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Kwang-Woo Jung
- b Research Division for Biotechnology, Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Dong-Gi Lee
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Yong-Sun Bahn
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
19
|
Indibulin dampens microtubule dynamics and produces synergistic antiproliferative effect with vinblastine in MCF-7 cells: Implications in cancer chemotherapy. Sci Rep 2018; 8:12363. [PMID: 30120268 PMCID: PMC6098095 DOI: 10.1038/s41598-018-30376-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Indibulin, a synthetic inhibitor of tubulin assembly, has shown promising anticancer activity with a minimal neurotoxicity in preclinical animal studies and in Phase I clinical trials for cancer chemotherapy. Using time-lapse confocal microscopy, we show that indibulin dampens the dynamic instability of individual microtubules in live breast cancer cells. Indibulin treatment also perturbed the localization of end-binding proteins at the growing microtubule ends in MCF-7 cells. Indibulin reduced inter-kinetochoric tension, produced aberrant spindles, activated mitotic checkpoint proteins Mad2 and BubR1, and induced mitotic arrest in MCF-7 cells. Indibulin-treated MCF-7 cells underwent apoptosis-mediated cell death. Further, the combination of indibulin with an anticancer drug vinblastine was found to exert synergistic cytotoxic effects on MCF-7 cells. Interestingly, indibulin displayed a stronger effect on the undifferentiated neuroblastoma (SH-SY5Y) cells than the differentiated neuronal cells. Unlike indibulin, vinblastine and colchicine produced similar depolymerizing effects on microtubules in both differentiated and undifferentiated SH-SY5Y cells. The data indicated a possibility that indibulin may reduce chemotherapy-induced peripheral neuropathy in cancer patients.
Collapse
|
20
|
Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 2018; 105:506-517. [PMID: 29883946 DOI: 10.1016/j.biopha.2018.05.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023] Open
Abstract
Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC50 of 40 μM and induced a mitotic block. At concentrations higher than its IC50, indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ± 3 μM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-β tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin.
Collapse
Affiliation(s)
- Lakshmi Mohan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
21
|
Mukherjee S, Chatterjee S, Poddar A, Bhattacharyya B, Gupta S. Cytotoxic biphenyl-4-carboxylic acid targets the tubulin–microtubule system and inhibits cellular migration in HeLa cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Suman Mukherjee
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| | - Shamba Chatterjee
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, 700054, India
| | | | - Suvroma Gupta
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| |
Collapse
|
22
|
Aqueous extract of Triphala inhibits cancer cell proliferation through perturbation of microtubule assembly dynamics. Biomed Pharmacother 2018; 98:76-81. [DOI: 10.1016/j.biopha.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
|
23
|
Cis-trimethoxy resveratrol induces intrinsic apoptosis via prometaphase arrest and prolonged CDK1 activation pathway in human Jurkat T cells. Oncotarget 2017; 9:4969-4984. [PMID: 29435156 PMCID: PMC5797027 DOI: 10.18632/oncotarget.23576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cis-trimethoxy resveratrol (cis-3M-RES) induced dose-dependent cytotoxicity and apoptotic DNA fragmentation in Jurkat T cell clones (JT/Neo); however, it induced only cytostasis in BCL-2-overexpressing cells (JT/BCL-2). Treatment with 0.25 μM cis-3M-RES induced G2/M arrest, BAK activation, Δψm loss, caspase-9 and caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage in JT/Neo cells time-dependently but did not induce these events, except G2/M arrest, in JT/BCL-2 cells. Moreover, cis-3M-RES induced CDK1 activation, BCL-2 phosphorylation at Ser-70, MCL-1 phosphorylation at Ser-159/Thr-163, and BIM (BIMEL and BIML) phosphorylation irrespective of BCL-2 overexpression. Enforced G1/S arrest by using a G1/S blocker aphidicolin completely inhibited cis-3M-RES-induced apoptotic events. Cis-3M-RES-induced phosphorylation of BCL-2 family proteins and mitochondrial apoptotic events were suppressed by a validated CDK1 inhibitor RO3306. Immunofluorescence microscopy showed that cis-3M-RES induced mitotic spindle defects and prometaphase arrest. The rate of intracellular polymeric tubulin to monomeric tubulin decreased markedly by cis-3M-RES (0.1-1.0 μM). Wild-type Jurkat clone A3, FADD-deficient Jurkat clone I2.1, and caspase-8-deficient Jurkat clone I9.2 exhibited similar susceptibilities to the cytotoxicity of cis-3M-RES, excluding contribution of the extrinsic death receptor-dependent pathway to the apoptosis. IC50 values of cis-3M-RES against Jurkat E6.1, U937, HL-60, and HeLa cells were 0.07-0.17 μM, whereas those against unstimulated human peripheral T cells and phytohaemagglutinin A-stimulated peripheral T cells were >10.0 and 0.23 μM, respectively. These results indicate that the antitumor activity of cis-3M-RES is mediated by microtubule damage, and subsequent prometaphase arrest and prolonged CDK1 activation that cause BAK-mediated mitochondrial apoptosis, and suggest that cis-3M-RES is a promising agent to treat leukemia.
Collapse
|
24
|
Brancini GTP, Tonani L, Rangel DEN, Roberts DW, Braga GUL. Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents. Fungal Biol 2017; 122:563-569. [PMID: 29801801 DOI: 10.1016/j.funbio.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023]
Abstract
Species of the Metarhizium anisopliae complex are globally ubiquitous soil-inhabiting and predominantly insect-pathogenic fungi. The Metarhizium genus contains species ranging from specialists, such as Metarhizium acridum that only infects acridids, to generalists, such as M. anisopliae, Metarhizium brunneum, and Metarhizium robertsii that infect a broad range of insects and can also colonize plant roots. There is little information available about the susceptibility of Metarhizium species to clinical and non-clinical antifungal agents. We determined the susceptibility of 16 isolates comprising four Metarhizium species with different ecological niches to seven clinical (amphotericin B, ciclopirox olamine, fluconazole, griseofulvin, itraconazole, tebinafine, and voriconazole) and one non-clinical (benomyl) antifungal agents. All isolates of the specialist M. acridum were clearly more susceptible to most antifungals than the isolates of the generalists M. anisopliae sensu lato, M. brunneum, and M. robertsii. All isolates of M. anisopliae, M. brunneum, and M. robertsii were resistant to fluconazole and some were also resistant to amphotericin B. The marked differences in susceptibility between the specialist M. acridum and the generalist Metarhizium species suggest that this characteristic is associated with their different ecological niches, and may assist in devising rational antifungal treatments for the rare cases of mycoses caused by Metarhizium species.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
25
|
Mahanty S, Raghav D, Rathinasamy K. In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide. CHEMOSPHERE 2017; 183:339-352. [PMID: 28554018 DOI: 10.1016/j.chemosphere.2017.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Triphenyltin hydroxide (TPTH) is a widely used pesticide that is highly toxic to a variety of organisms including humans and a potential contender for the environmental pollutant. In the present study, the cytotoxic mechanism of TPTH on mammalian cells was analyzed using HeLa cells and the antibacterial activity was analyzed using B. subtilis and E. coli cells. TPTH inhibited the growth of HeLa cells with a half-maximal inhibitory concentration of 0.25 μM and induced mitotic arrest. Immunofluorescence microscopy analysis showed that TPTH caused strong depolymerization of interphase microtubules and spindle abnormality with the appearance of colchicine type mitosis and condensed chromosome. TPTH exhibited high affinity for tubulin with a dissociation constant of 2.3 μM and inhibited the in vitro microtubule assembly in the presence of glutamate as well as microtubule-associated proteins. Results from the molecular docking and in vitro experiments implied that TPTH may have an overlapping binding site with colchicine on tubulin with a distance of about 11 Å between them. TPTH also binds to DNA at the A-T rich region of the minor groove. The data presented in the study revealed that the toxicity of TPTH in mammalian cells is mediated through its interactions with DNA and its strong depolymerizing activity on tubulin. However, its antibacterial activity was not through FtsZ, the prokaryotic homolog of tubulin but perhaps through its interactions with DNA.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
26
|
Raghav D, Ashraf SM, Mohan L, Rathinasamy K. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Biochemistry 2017; 56:2594-2611. [DOI: 10.1021/acs.biochem.7b00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Shabeeba M. Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Lakshmi Mohan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
27
|
Roberts CA, Miller JH, Atkinson PH. The genetic architecture in Saccharomyces cerevisiae that contributes to variation in drug response to the antifungals benomyl and ketoconazole. FEMS Yeast Res 2017; 17:3787663. [DOI: 10.1093/femsyr/fox027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022] Open
|
28
|
Cheriyamundath S, Mahaddalkar T, Kantevari S, Lopus M. Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells. Biomed Pharmacother 2017; 86:74-80. [DOI: 10.1016/j.biopha.2016.11.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022] Open
|
29
|
Appadurai P, Rathinasamy K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol 2016; 9:264-72. [PMID: 26435279 DOI: 10.1049/iet-nbt.2015.0008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colloidal silver nanoparticles (AgNPs) have attracted much attention in recent years as diagnostics and new drug delivery system in cancer medicine. To study the effects of plumbagin (PLB), a relatively non-toxic napthaquinone isolated from the roots of Plumbago indica in human cervical cancer cell line and developed a formulation to enhance its cytotoxic activities. Silver nanoparticles were synthesised by chemical reduction method and complexed with PLB. Both the AgNPs and the complex PLB-AgNPs were characterised by dynamic light scattering, high-resolution scanning electron microscopy and transmission electron microscopy. The amount of PLB and PLB-AgNPs internalised was determined by ultra-violet-visible spectrophotometer. Cell inhibition was determined by sulphorhodamine B assay. Mitotic index was determined by Wright-Giemsa staining. Apoptosis induction was assessed by western blot using cleaved poly adenosine diphosphate-ribose polymerase antibody. The scanning electron microscope analysis indicated an average particle size of 32±8 nm in diameter. Enhanced internalisation of PLB into the HeLa cells was observed in PLB-AgNPs. PLB inhibited proliferation of cells with IC50 value of about 18±0.6 µM and blocked the cells at mitosis in a concentration-dependent manner. PLB also inhibited the post-drug exposure clonogenic survival of cells and induced apoptosis. The antiproliferative, antimitotic and apoptotic activities were also found to be increased when cells were treated with PLB-AgNPs. The authors results support the idea that AgNP could be a promising and effective drug delivery system for enhanced activity of PLB in cancer treatment.
Collapse
Affiliation(s)
- Prakash Appadurai
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
30
|
Benomyl treatment decreases fecundity of ant queens. J Invertebr Pathol 2015; 130:61-3. [DOI: 10.1016/j.jip.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
|
31
|
Rao H, Huangfu C, Wang Y, Wang X, Tang T, Zeng X, Li Z, Chen Y. Physicochemical Profiles of the Marketed Agrochemicals and Clues for Agrochemical Lead Discovery and Screening Library Development. Mol Inform 2015; 34:331-8. [DOI: 10.1002/minf.201400143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/21/2015] [Indexed: 12/31/2022]
|
32
|
Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells. Biochem Pharmacol 2015; 94:257-69. [PMID: 25732194 DOI: 10.1016/j.bcp.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/23/2022]
Abstract
The present study sought to determine the correlation between 2-methoxyestradiol (2-MeO-E2)-induced cell cycle arrest and 2-MeO-E2-induced apoptosis. Exposure of Jurkat T cell clone (JT/Neo) to 2-MeO-E2 (0.5-1.0 μM) caused G2/M arrest, Bak activation, Δψm loss, caspase-9 and -3 activation, PARP cleavage, intracellular ROS accumulation, and apoptotic DNA fragmentation, whereas none of these events except for G2/M arrest were induced in Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, Cdk1 phosphorylation at Thr-161 and dephosphorylation at Tyr-15, up-regulation of cyclin B1 expression, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation at Ser-159/Thr-163, and Bim phosphorylation were detected irrespective of Bcl-2 overexpression. Concomitant treatment of JT/Neo cells with 2-MeO-E2 and the G1/S blocking agent aphidicolin resulted in G1/S arrest and abrogation of all apoptotic events, including Cdk1 activation, phosphorylation of Bcl-2, Mcl-1 and Bim, and ROS accumulation. The 2-MeO-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor, but not by an Aurora A kinase (AURKA), Aurora B kinase (AURKB), JNK, or p38 MAPK inhibitor. Immunofluorescence microscopic analysis revealed that 2-MeO-E2-induced mitotic arrest was caused by mitotic spindle network impairment and prometaphase arrest. Whereas 10-20 μM 2-MeO-E2 reduced the proportion of intracellular polymeric tubulin to monomeric tubulin, 0.5-5.0 μM 2-MeO-E2 increased it. These results demonstrate that the apoptogenic effect of 2-MeO-E2 (0.5-1.0 μM) was attributable to mitotic spindle defect-mediated prometaphase arrest, Cdk1 activation, phosphorylation of Bcl-2, Mcl-1, and Bim, and activation of Bak and mitochondria-dependent caspase cascade.
Collapse
|
33
|
Deleterious effects of benomyl and carbendazim on human placental trophoblast cells. Reprod Toxicol 2014; 51:64-71. [PMID: 25530041 DOI: 10.1016/j.reprotox.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Benomyl and carbendazim are benzimidazole fungicides that are used throughout the world against a wide range of fungal diseases of agricultural products. There is as yet little information regarding the toxicity of benzimidazole fungicides to human placenta. In this study, we utilized human placental trophoblast cell line HTR-8/SVneo (HTR-8) to access the toxic effects of benomyl and carbendazim. Our data showed that these two fungicides decreased cell viability and the percentages of cells in G0/G1 phase, as well as induced apoptosis of HTR-8 cells. The invasion and migration of HTR-8 cells were significantly inhibited by benomyl and carbendazim. We further found that benomyl and carbendazim altered the expression of protease systems (MMPs/TIPMs and uPA/PAI-1) and adhesion molecules (integrin α5 and β1) in HTR-8 cells. Our present study firstly shows the deleterious effects of benomyl and carbendazim on placental cells and suggests a potential risk of benzimidazole fungicides to human reproduction.
Collapse
|
34
|
Appadurai P, Rathinasamy K. Indicine N-oxide binds to tubulin at a distinct site and inhibits the assembly of microtubules: a mechanism for its cytotoxic activity. Toxicol Lett 2013; 225:66-77. [PMID: 24300171 DOI: 10.1016/j.toxlet.2013.11.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
Indicine N-oxide, a pyrrolizidine alkaloid present in the plant Heliotropium indicum had shown promising cytotoxic activity in various tumor models. The compound exhibited severe toxicity to hepatocytes and bone marrow cells. The present work was aimed to evaluate the molecular mechanism of the toxicity of indicine N-oxide. We found that indicine N-oxide inhibited the proliferation of various cancer cell lines in a concentration dependent manner with IC50 ranging from 46 to 100 μM. At the half maximal inhibitory concentration it blocked the cell cycle progression at mitosis without significantly altering the organization of the spindle and interphase microtubules. The toxicities of the compound at higher concentrations are attributed to its severe depolymerizing effect on both the interphase and spindle microtubules. Binding studies using purified goat brain tubulin indicated that indicine N-oxide binds to tubulin at a distinct site not shared by colchicine or taxol. It decreased the polymer mass of both purified tubulin and MAP-rich tubulin. It was found to induce cleavage of DNA using pUC18 plasmid. The interactions of indicine N-oxide on DNA were also confirmed by computational analysis; which predicted its binding site at the minor groove of DNA. These studies bring to light that the toxicities of indicine N-oxide were due to its DNA damaging effects and depolymerization of microtubules.
Collapse
Affiliation(s)
- Prakash Appadurai
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
35
|
Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2220-32. [DOI: 10.1016/j.bbamcr.2013.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
|
36
|
Lopus M. Mechanism of mitotic arrest induced by dolastatin 15 involves loss of tension across kinetochore pairs. Mol Cell Biochem 2013; 382:93-102. [DOI: 10.1007/s11010-013-1721-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
37
|
Gajula PK, Asthana J, Panda D, Chakraborty TK. A Synthetic Dolastatin 10 Analogue Suppresses Microtubule Dynamics, Inhibits Cell Proliferation, and Induces Apoptotic Cell Death. J Med Chem 2013; 56:2235-45. [DOI: 10.1021/jm3009629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Jayant Asthana
- Department
of Biosciences and
Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076,
India
| | - Dulal Panda
- Department
of Biosciences and
Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076,
India
| | | |
Collapse
|
38
|
Raab MS, Breitkreutz I, Anderhub S, Rønnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, Fruehauf J, Nissen F, Mier W, Haberkorn U, Ho AD, Goldschmidt H, Anderson KC, Clausen MH, Krämer A. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 2012; 72:5374-85. [PMID: 22942257 DOI: 10.1158/0008-5472.can-12-2026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In contrast to normal cells, malignant cells are frequently aneuploid and contain multiple centrosomes. To allow for bipolar mitotic division, supernumerary centrosomes are clustered into two functional spindle poles in many cancer cells. Recently, we have shown that griseofulvin forces tumor cells with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. Here, we describe the characterization of the novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering in malignant cells. At concentrations where GF-15 had no significant impact on tubulin polymerization, spindle tension was markedly reduced in mitotic cells upon exposure to GF-15. Moreover, isogenic cells with conditional centrosome amplification were more sensitive to GF-15 than parental controls. In a wide array of tumor cell lines, mean inhibitory concentrations (IC(50)) for proliferation and survival were in the range of 1 to 5 μmol/L and were associated with apoptotic cell death. Importantly, treatment of mouse xenograft models of human colon cancer and multiple myeloma resulted in tumor growth inhibition and significantly prolonged survival. These results show the in vitro and in vivo antitumor efficacy of a prototype small molecule inhibitor of centrosomal clustering and strongly support the further evaluation of this new class of molecules.
Collapse
Affiliation(s)
- Marc S Raab
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rai A, Surolia A, Panda D. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics. PLoS One 2012; 7:e44311. [PMID: 22952952 PMCID: PMC3432122 DOI: 10.1371/journal.pone.0044311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/01/2012] [Indexed: 12/30/2022] Open
Abstract
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazolidin-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2±1.8 µM), human breast adenocarcinoma (MCF-7) (IC50, 10.0±0.5 µM), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0±1 µM), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8±0.3 µM) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5±1µM) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3±1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (Ki) of 5.2±1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.
Collapse
Affiliation(s)
- Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (DP); (AS)
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (DP); (AS)
| |
Collapse
|
40
|
Gireesh KK, Rashid A, Chakraborti S, Panda D, Manna T. CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochem Pharmacol 2012; 84:633-45. [PMID: 22705644 DOI: 10.1016/j.bcp.2012.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/18/2022]
Abstract
A plant dictamine analog, 1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone (CIL-102) has been shown to exert potent anti-tumor activity. In this study, we examined the mode of interaction of CIL-102 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. CIL-102 bound to tubulin at a single site with a dissociation constant ~0.4 μM. Isothermal titration calorimetry revealed that CIL-102-tubulin interaction is highly enthalpy driven and that the binding affords a large negative heat capacity change (ΔC(p) = -790 cal mol(-1) K(-1)) with an enthalpy-entropy compensation. An analysis of the modified Dixon plot suggested that CIL-102 competitively inhibited the binding of podophyllotoxin, a colchicine-binding site agent, to tubulin. Computational modeling indicated that CIL-102 binds exclusively at the β-subunit of tubulin and that CIL-102 and colchicine partially share their binding sites on tubulin. It bound to tubulin reversibly and the binding was estimated to be ~1000 times faster than that of colchicine. CIL-102 potently inhibited the proliferation of MCF-7 cells, induced monopolar spindle formation and multi-nucleation. At half-maximal inhibitory concentration, the spindle microtubules were visibly depolymerized and disorganized. CIL-102 reduced the inter-polar distances of bipolar mitotic cells indicating that it impaired microtubule-kinetochore attachments. CIL-102-treatment induced apoptosis in MCF-7 cells in association with increased nuclear accumulation of p53 and p21 suggesting that apoptosis is triggered through a p53-p21 dependent pathway. The results indicated that CIL-102 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided important insights into the differential mode of tubulin binding by CIL-102 and colchicine.
Collapse
Affiliation(s)
- K K Gireesh
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | | | | | | | | |
Collapse
|
41
|
Cardone A. Testicular toxicity of methyl thiophanate in the Italian wall lizard (Podarcis sicula): morphological and molecular evaluation. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:512-23. [PMID: 22057426 DOI: 10.1007/s10646-011-0812-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 05/22/2023]
Abstract
The effects of the fungicide methyl thiophanate (MT) on testis were determined in the Italian wall lizard (Podarcis sicula) using morphological and molecular analyzes. Three experimental trials were performed: an acute test using six doses, a two-week chronic test, and "ecotoxicological" exposure (3 weeks). The minimal lethal dose (LD(50)) of pure MT, reached by the acute test, was 100 mg/kg body weight. Testicular histopathology of surviving animals showed a reduced lumen and several multinucleated giant cells 24 h after injection followed by large decreases in spermatogonia (72%) and secondary spermatocytes (58%) and a loss of spermatids and sperms 7 days after. In the chronic test, a dose equivalent to 1/100 of LD(50) was injected on alternate days. Complete shutting of the lumen and a great decrease in spermatogonia (82%) were observed. In "ecotoxicological" exposure, achieved with a commercial MT compound, testis showed a decrease in primary spermatocytes (20%) and several vacuoles. An increase in germ cell apoptosis was observed in all experimental groups using TUNEL assay. A decrease in expression of androgen and estrogen receptor (AR and ER) mRNAs was seen in all experimental groups. The reduction in AR and ER mRNAs was correlated to exposure time. Indeed, in the "ecotoxicological" treatment (30 days), the decrease reached 82 and 90% for AR and ER mRNAs, respectively. These data strongly indicate that treatment with MT, damaging the seminiferous epithelium and decreasing steroid receptor expression, might render exposed lizards infertile.
Collapse
Affiliation(s)
- Anna Cardone
- Department of Biological Science, Section of Evolutionary and Comparative Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
42
|
Han CR, Jun DY, Woo HJ, Jeong SY, Woo MH, Kim YH. Induction of microtubule-damage, mitotic arrest, Bcl-2 phosphorylation, Bak activation, and mitochondria-dependent caspase cascade is involved in human Jurkat T-cell apoptosis by aruncin B from Aruncus dioicus var. kamtschaticus. Bioorg Med Chem Lett 2012; 22:945-53. [DOI: 10.1016/j.bmcl.2011.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/26/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
43
|
Yang C, Hamel C, Vujanovic V, Gan Y. Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/130289] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungicides have been used widely in order to control fungal diseases and increase crop production. However, the effects of fungicides on microorganisms other than fungi remain unclear. The modes of action of fungicides were never well classified and presented, making difficult to estimate their possible nontarget effects. In this paper, the action modes and effects of fungicides targeting cell membrane components, protein synthesis, signal transduction, respiration, cell mitosis, and nucleic acid synthesis were classified, and their effects on nontarget microorganisms were reviewed. Modes of action and potential non-target effects on soil microorganisms should be considered in the selection of fungicide in order to protect the biological functions of soil and optimize the benefits derived from fungicide use in agricultural systems.
Collapse
Affiliation(s)
- Chao Yang
- Semiarid Prairie Agricultural Research Centre, AAFC, Swift Current, SK, Canada S9H 3X2
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5N8
| | - Chantal Hamel
- Semiarid Prairie Agricultural Research Centre, AAFC, Swift Current, SK, Canada S9H 3X2
| | - Vladimir Vujanovic
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5N8
| | - Yantai Gan
- Semiarid Prairie Agricultural Research Centre, AAFC, Swift Current, SK, Canada S9H 3X2
| |
Collapse
|
44
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|
45
|
Balakrishna MS, Suresh D, Rai A, Mague JT, Panda D. Dinuclear Copper(I) Complexes Containing Cyclodiphosphazane Derivatives and Pyridyl Ligands: Synthesis, Structural Studies, and Antiproliferative Activity toward Human Cervical and Breast Cancer Cells. Inorg Chem 2010; 49:8790-801. [DOI: 10.1021/ic100944d] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - D. Suresh
- Phosphorus Laboratory, Department of Chemistry
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Joel T. Mague
- Chemistry Department, Tulane University, New Orleans, Louisiana 70118
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| |
Collapse
|
46
|
Banerjee M, Singh P, Panda D. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 2010; 277:3437-48. [PMID: 20646066 DOI: 10.1111/j.1742-4658.2010.07750.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, curcumin, a potential anticancer agent, was found to dampen the dynamic instability of individual microtubules in living MCF-7 cells. It strongly reduced the rate and extent of shortening states, and modestly reduced the rate and extent of growing states. In addition, curcumin decreased the fraction of time microtubules spent in the growing state and strongly increased the time microtubules spent in the pause state. Brief treatment with curcumin depolymerized mitotic microtubules, perturbed microtubule-kinetochore attachment and disturbed the mitotic spindle structure. Curcumin also perturbed the localization of the kinesin protein Eg5 and induced monopolar spindle formation. Further, curcumin increased the accumulation of Mad2 and BubR1 at the kinetochores, indicating that it activated the mitotic checkpoint. In addition, curcumin treatment increased the metaphase/anaphase ratio, indicating that it can delay mitotic progression from the metaphase to anaphase. We provide evidence suggesting that the affected cells underwent apoptosis via the p53-dependent apoptotic pathway. The results support the idea that kinetic stabilization of microtubule dynamics assists in the nuclear translocation of p53. Curcumin exerted additive effects when combined with vinblastine, a microtubule depolymerizing drug, whereas the combination of curcumin with paclitaxel, a microtubule-stabilizing drug, produced an antagonistic effect on the inhibition of MCF-7 cell proliferation. The results together suggested that curcumin inhibited MCF-7 cell proliferation by inhibiting the assembly dynamics of microtubules.
Collapse
Affiliation(s)
- Mithu Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
47
|
HMBA depolymerizes microtubules, activates mitotic checkpoints and induces mitotic block in MCF-7 cells by binding at the colchicine site in tubulin. Biochem Pharmacol 2010; 80:50-61. [DOI: 10.1016/j.bcp.2010.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/28/2010] [Accepted: 03/03/2010] [Indexed: 12/12/2022]
|
48
|
Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer 2010; 10:213. [PMID: 20482847 PMCID: PMC2885362 DOI: 10.1186/1471-2407-10-213] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. Methods The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Results Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation. Conclusions The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.
Collapse
|
49
|
Benachour N, Séralini GE. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 2009; 22:97-105. [PMID: 19105591 DOI: 10.1021/tx800218n] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have evaluated the toxicity of four glyphosate (G)-based herbicides in Roundup formulations, from 10(5) times dilutions, on three different human cell types. This dilution level is far below agricultural recommendations and corresponds to low levels of residues in food or feed. The formulations have been compared to G alone and with its main metabolite AMPA or with one known adjuvant of R formulations, POEA. HUVEC primary neonate umbilical cord vein cells have been tested with 293 embryonic kidney and JEG3 placental cell lines. All R formulations cause total cell death within 24 h, through an inhibition of the mitochondrial succinate dehydrogenase activity, and necrosis, by release of cytosolic adenylate kinase measuring membrane damage. They also induce apoptosis via activation of enzymatic caspases 3/7 activity. This is confirmed by characteristic DNA fragmentation, nuclear shrinkage (pyknosis), and nuclear fragmentation (karyorrhexis), which is demonstrated by DAPI in apoptotic round cells. G provokes only apoptosis, and HUVEC are 100 times more sensitive overall at this level. The deleterious effects are not proportional to G concentrations but rather depend on the nature of the adjuvants. AMPA and POEA separately and synergistically damage cell membranes like R but at different concentrations. Their mixtures are generally even more harmful with G. In conclusion, the R adjuvants like POEA change human cell permeability and amplify toxicity induced already by G, through apoptosis and necrosis. The real threshold of G toxicity must take into account the presence of adjuvants but also G metabolism and time-amplified effects or bioaccumulation. This should be discussed when analyzing the in vivo toxic actions of R. This work clearly confirms that the adjuvants in Roundup formulations are not inert. Moreover, the proprietary mixtures available on the market could cause cell damage and even death around residual levels to be expected, especially in food and feed derived from R formulation-treated crops.
Collapse
Affiliation(s)
- Nora Benachour
- UniVersity of Caen, Laboratory Estrogens and Reproduction, UPRES EA 2608, Institute of Biology, Caen 14032, France
| | | |
Collapse
|
50
|
Clément MJ, Rathinasamy K, Adjadj E, Toma F, Curmi PA, Panda D. Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: evidence of distinct binding sites for these agents in tubulin. Biochemistry 2008; 47:13016-25. [PMID: 19049291 DOI: 10.1021/bi801136q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benomyl, a tubulin-targeted antimitotic antifungal agent, belongs to the benzimidazole group of compounds, which are known to inhibit the binding of colchicine to tubulin. Therefore, benomyl was thought to bind at or near the colchicine-binding site on tubulin. However, recent mutational studies in yeast and fluorescence studies involving competitive binding of benomyl and colchicine on goat brain tubulin suggested that benomyl may bind to tubulin at a site distinct from the colchicine-binding site. We set out to examine whether colchicine and benomyl bind to tubulin at distinct sites using a human cervical cancer (HeLa) cell line with the thinking that these agents should exert either additive or synergistic activity on cell proliferation if their binding sites on tubulin are different. We found that benomyl and colchicine synergistically inhibited the proliferation of HeLa cells and blocked their cell cycle progression at mitosis. The synergistic activity of benomyl and colchicine was also apparent from their strong depolymerizing effects on both the spindle and interphase microtubules when used in combinations, providing further evidence that these agents bind to tubulin at different sites. Using NMR spectroscopy, we finally demonstrated that benomyl and colchicine bind to tubulin at different sites and that the binding of colchicine seems to positively influence the binding of benomyl to tubulin and vice versa. Further, an analysis of the saturation transfer difference NMR data yielded an interesting insight into the colchicine-tubulin interaction. The data presented in this study provided a mechanistic understanding of the synergistic effects of benomyl and colchicine on HeLa cell proliferation.
Collapse
Affiliation(s)
- Marie-Jeanne Clément
- Laboratoire Structure et Activite des Biomolecules Normales et Pathologiques, INSERM U829, Universite Evry-Val d'Essonne, EA3637, Evry, F-91025 France
| | | | | | | | | | | |
Collapse
|