1
|
Zhi P, Chen W, Zhang W, Ge P, Chang C. Wheat Topoisomerase VI Positively Regulates the Biosynthesis of Cuticular Wax and Cutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25560-25573. [PMID: 39527756 DOI: 10.1021/acs.jafc.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lipophilic cuticles mainly composed of wax mixtures and cutin matrices seal the plant epidermis and control plant development and environmental adaptation. Although cuticle-associated traits have been selected in the breeding of agronomically important cereal bread wheat, the biosynthesis of wheat cuticular wax and cutin remains poorly understood. Herein, wheat topoisomerase VI was characterized as an essential activator of cuticular wax and cutin biosynthesis. Knock-down of wheat TaTOP6A, TaTOP6B, TaRHL1, or TaBIN4 gene encoding component of topoisomerase VI resulted in decreased loads of leaf cuticular wax and cutin, as well as increased leaf cuticle permeability. Moreover, TaCYP86A2 was identified as a key component of the wheat cutin biosynthetic machinery. Reduction of wheat TaCYP86A2 expression led to decreased cutin accumulation and enhanced cuticle permeability. In addition, TaTOP6A, TaTOP6B, TaRHL1, or TaBIN4 was shown to enrich at the promoter regions of the wax biosynthesis gene TaKCS1 and the cutin biosynthesis gene TaCYP86A2. Importantly, chromatin at TaKCS1 and TaCYP86A2 promoters is marked by high nucleosome occupancy and low histone acetylation in TaTOP6A-, TaTOP6B-, TaRHL1-, or TaBIN4-silenced wheat leaves. These results collectively support that wheat topoisomerase VI positively regulates the biosynthesis of cuticular wax and cutin probably via maintaining a permissive chromatin state at TaKCS1 and TaCYP86A2 genes.
Collapse
Affiliation(s)
- Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wanzhen Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wenhui Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengkun Ge
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Song J, Wang A, Zhu W, Yang L, Xie Z, Han X, Wang B, Tian B, Zhang L, Chen W, Wei F, Shi G. A cotton endoreduplication gene, GaTOP6B, regulates trichome branching development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108888. [PMID: 38954944 DOI: 10.1016/j.plaphy.2024.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.
Collapse
Affiliation(s)
- Jiaqi Song
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ao Wang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Zhu
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lanlan Yang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xingzhou Han
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Boyang Wang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weiwei Chen
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Ganguly A, Amin S, Al-Amin, Tasnim Chowdhury F, Khan H, Riazul Islam M. Whole genome resequencing unveils low-temperature stress tolerance specific genomic variations in jute (Corchorus sp.). J Genet Eng Biotechnol 2024; 22:100376. [PMID: 38797551 PMCID: PMC11015510 DOI: 10.1016/j.jgeb.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
Jute (Corchorus sp.), a commercially important and eco-friendly crop, is widely cultivated in Bangladesh, India, and China. Some varieties of this tropical plant such as the Corchorus olitorius. Variety accession no. 2015 (acc. 2015) has been found to be low-temperature tolerant. The current study was designed to explore the genome-wide variations present in the tolerant plant acc. 2015 in comparison to the sensitive farmer popular variety Corchorus olitorius var. O9897 using the whole genome resequencing technique. Among different variations, intergenic Single Nucleotide Polymorphism (SNPs) and Insertion-Deletion (InDels) were found in the highest percentage whereas approximately 3% SNPs and 2% InDels were found in exonic regions in both plants. Gene enrichment analysis indicated the presence of acc. 2015 specific SNPs in the genes encoding peroxidase, ER lumen protein retaining receptor, and hexosyltransferase involved in stress response (GO:0006950) which were not present in sensitive variety O9897. Besides, distinctive copy number variation regions (CNVRs) comprising 120 gene loci were found in acc. 2015 with a gain of function from multiple copy numbers but absent in O9897. Gene ontology analysis revealed these gene loci to possess different receptors like kinases, helicases, phosphatases, transcription factors especially Myb transcription factors, regulatory proteins containing different binding domains, annexin, laccase, acyl carrier protein, potassium transporter, and vesicular transporter proteins that are responsible for low temperature induced adaptation pathways in plants. This work of identifying genomic variations linked to cold stress tolerance traits will help to develop successful markers that will pave the way to develop genetically modified cold-resistant jute lines for year-round cultivation to meet the demand for a sustainable fiber crop economy.
Collapse
Affiliation(s)
- Athoi Ganguly
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Shaheena Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, National Institute of Science and Technology, Dhaka, Bangladesh
| | - Al-Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Farhana Tasnim Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
5
|
Li M, Li S, He Y, Wang Y, Zhang T, Li P, He Y. ZmSPO11-2 is critical for meiotic recombination in maize. Chromosome Res 2022; 30:415-428. [PMID: 35674907 DOI: 10.1007/s10577-022-09694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
Most plant species have three or more SPO11/TOPOVIA homologs and two TOPOVIB homologs, which associate to trigger meiotic double-strand break (DSB) formation and subsequent meiotic recombination. In Zea mays L. (maize), ZmSPO11-1 and ZmMTOPVIB have been reported to be indispensable for the initiation of meiotic recombination, yet the function of ZmSPO11-2 remains unclear. In this study, we characterized meiotic functions of ZmSPO11-2 during male meiosis in maize. Two independent Zmspo11-1 knock-out mutants exhibited normal vegetative growth but both male and female sterility. The formation of meiotic DSBs of DNA molecules was fully abolished in the Zmspo11-2 plants, leading to the defective homologous chromosome paring, synapsis, recombination, and segregation. However, the bipolar spindle assembly was not noticeably affected in Zmspo11-2 meiocytes. Overall, our results demonstrate that as its partner ZmSPO11-1 and ZmMTOPVIB, ZmSPO11-2 plays essential roles in DSB formation and homologous recombination in maize meiosis.
Collapse
Affiliation(s)
- Menghan Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.,College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Shuyue Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ping Li
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
6
|
Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading. Proc Natl Acad Sci U S A 2022; 119:e2001290119. [PMID: 35759655 PMCID: PMC9271158 DOI: 10.1073/pnas.2001290119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.
Collapse
|
7
|
Mao F, Wang Z, Zheng Y, Tang S, Luo X, Xiong T, Yan S. Fine mapping of a heading date QTL, Se16(t), under extremely long day conditions in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:70. [PMID: 37309360 PMCID: PMC10236121 DOI: 10.1007/s11032-021-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Heading date (flowering time) is a key trait that determines the yield and the adaptability of rice varieties. In the past 20 years, a number of genetic studies have been carried out to elucidate the genetic control of rice heading date, and many important genes have been cloned. These genes were identified under natural day (ND) conditions; however, little is known about the heading behavior under extreme day-length conditions. In this study, we identified a japonica variety, Sasanishiki, that showed sensitivity to extremely long days (ELD). Its heading date was significantly delayed for about 20 days under artificial ELD conditions that were achieved by setting a light emitting diode (LED) lamp beside a paddy field. We found that the late heading phenotype of Sasanishiki was induced when the day length was more than 14.75 h, and the LED light intensity was above 2 µmol m-2 s-1. Genetic analysis revealed that the photoperiod sensitivity of Sasanishiki was controlled by a dominant locus, temporarily named Se16(t). It was fine mapped to a 30.4-kb interval on chromosome 3, containing five predicted genes, including PHYC, a phytochrome encoding gene of rice. Our findings provide new information on the heading date under ELD conditions in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01263-8.
Collapse
Affiliation(s)
- Fangming Mao
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Zhiquan Wang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Yiyun Zheng
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Shusheng Tang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xin Luo
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Tao Xiong
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Song Yan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
8
|
Bhaskar A, Paul LK, Sharma E, Jha S, Jain M, Khurana JP. OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:98-112. [PMID: 33581623 DOI: 10.1016/j.plaphy.2021.01.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.
Collapse
Affiliation(s)
- Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Laju K Paul
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sampoornananda Jha
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Mukesh Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
9
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
10
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
11
|
Fayos I, Meunier AC, Vernet A, Navarro-Sanz S, Portefaix M, Lartaud M, Bastianelli G, Périn C, Nicolas A, Guiderdoni E. Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7046-7058. [PMID: 32842152 DOI: 10.1093/jxb/eraa391] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/20/2020] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis.
Collapse
Affiliation(s)
- Ian Fayos
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
- Meiogenix, Paris, France
| | - Anne Cécile Meunier
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Sergi Navarro-Sanz
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Murielle Portefaix
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Marc Lartaud
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | | | - Christophe Périn
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Alain Nicolas
- Institut Curie, CNRS UMR 3244, PSL University, Paris Cedex, France
- Meiogenix, Paris, France
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| |
Collapse
|
12
|
Da Ines O, Michard R, Fayos I, Bastianelli G, Nicolas A, Guiderdoni E, White C, Sourdille P. Bread wheat TaSPO11-1 exhibits evolutionarily conserved function in meiotic recombination across distant plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2052-2068. [PMID: 32559326 DOI: 10.1111/tpj.14882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/29/2020] [Indexed: 05/24/2023]
Abstract
The manipulation of meiotic recombination in crops is essential to develop new plant varieties rapidly, helping to produce more cultivars in a sustainable manner. One option is to control the formation and repair of the meiosis-specific DNA double-strand breaks (DSBs) that initiate recombination between the homologous chromosomes and ultimately lead to crossovers. These DSBs are introduced by the evolutionarily conserved topoisomerase-like protein SPO11 and associated proteins. Here, we characterized the homoeologous copies of the SPO11-1 protein in hexaploid bread wheat (Triticum aestivum). The genome contains three SPO11-1 gene copies that exhibit 93-95% identity at the nucleotide level, and clearly the A and D copies originated from the diploid ancestors Triticum urartu and Aegilops tauschii, respectively. Furthermore, phylogenetic analysis of 105 plant genomes revealed a clear partitioning between monocots and dicots, with the seven main motifs being almost fully conserved, even between clades. The functional similarity of the proteins among monocots was confirmed through complementation analysis of the Oryza sativa (rice) spo11-1 mutant by the wheat TaSPO11-1-5D coding sequence. Also, remarkably, although the wheat and Arabidopsis SPO11-1 proteins share only 55% identity and the partner proteins also differ, the TaSPO11-1-5D cDNA significantly restored the fertility of the Arabidopsis spo11-1 mutant, indicating a robust functional conservation of the SPO11-1 protein activity across distant plants. These successful heterologous complementation assays, using both Arabidopsis and rice hosts, are good surrogates to validate the functionality of candidate genes and cDNA, as well as variant constructs, when the transformation and mutant production in wheat is much longer and more tedious.
Collapse
Affiliation(s)
- Olivier Da Ines
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, F-63000, France
| | - Robin Michard
- Université Clermont-Auvergne (UCA), INRAE, UMR1095 - Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, 63000, France
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
| | - Ian Fayos
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
- UMR AGAP, CIRAD, Montpellier Cedex 5, 34398, France
- Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, 34398, France
| | | | - Alain Nicolas
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
- Institut Curie, Centre de recherche, CNRS UMR 3244, PSL University, 26 rue d'Ulm, Paris Cedex 05, 75248, France
| | - Emmanuel Guiderdoni
- UMR AGAP, CIRAD, Montpellier Cedex 5, 34398, France
- Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, 34398, France
| | - Charles White
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, F-63000, France
| | - Pierre Sourdille
- Université Clermont-Auvergne (UCA), INRAE, UMR1095 - Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, 63000, France
| |
Collapse
|
13
|
Lang L, Schnittger A. Endoreplication - a means to an end in cell growth and stress response. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:85-92. [PMID: 32217456 DOI: 10.1016/j.pbi.2020.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Endoreplication, also called endoreduplication or endopolyploidization, is a cell cycle variant in which the genome is re-replicated in the absence of mitosis causing cellular polyploidization. Despite the common occurrence of endoreplication in plants and the tremendous extent in specific tissues and cell types such as the endosperm, the underlying molecular regulation and the physiological consequences have only now started to be understood. Endoreplication is often associated with cell differentiation and withdrawal from mitotic cycles. Recent studies have underlined the importance of endoreplication as a stress response and we summarize here this progress with particular focus on future perspectives offered by the recent advances in genomics and biotechnology.
Collapse
Affiliation(s)
- Lucas Lang
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany.
| |
Collapse
|
14
|
Fayos I, Mieulet D, Petit J, Meunier AC, Périn C, Nicolas A, Guiderdoni E. Engineering meiotic recombination pathways in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2062-2077. [PMID: 31199561 PMCID: PMC6790369 DOI: 10.1111/pbi.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 05/02/2023]
Abstract
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3- and 3.2-fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double-strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11-1 topoisomerase-like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis-specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.
Collapse
Affiliation(s)
- Ian Fayos
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Delphine Mieulet
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Julie Petit
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Anne Cécile Meunier
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Christophe Périn
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Alain Nicolas
- Institut Curie, CNRS UMR 3244University PSLParisFrance
- MeiogenixParisFrance
| | - Emmanuel Guiderdoni
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| |
Collapse
|
15
|
Wei Z, Shi X, Wei F, Fan Z, Mei L, Tian B, Shi Y, Cao G, Shi G. The cotton endocycle-involved protein SPO11-3 functions in salt stress via integrating leaf stomatal response, ROS scavenging and root growth. PHYSIOLOGIA PLANTARUM 2019; 167:127-141. [PMID: 30426499 DOI: 10.1111/ppl.12875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The SPORULATION 11 (SPO11) proteins are among eukaryotic the topoisomerase VIA (Topo VIA) homologs involved in modulating various important biological processes, such as growth, development and stress response via endoreduplication in plants, but the underlying mechanism response to stress remains largely unknown under salt treatment. Here, we attempted to characterize a homolog of TOP VIA in upland cotton (Gossypium hirsutum L.), designated as GhSPO11-3. The silencing of GhSPO11-3 in cotton plants resulted in a dwarf phenotype with a failure of cell endoreduplication and a phase shift in the ploidy levels. The GhSPO11-3-silenced plants also showed substantial changes including accumulated malondialdehyde, significantly reduced chlorophyll and proline contents and decreased antioxidative enzyme activity after salt treatment. In addition, transgenic Arabidopsis lines overexpressing GhSPO11-3 accelerated both leaf and root growth with cell expansion and endopolyploidy. Both leaf stomatal density and aperture were markedly decreased, and the transgenic Arabidopsis lines were more tolerant with expression of stress-responsive genes under salinity stress. Furthermore, consistent with the reduced reactive oxygen species (ROS), the expression of ROS scavenging-related genes was largely reinforced, and antioxidant enzyme activities were accordingly significantly enhanced in transgenic Arabidopsis lines under salt stress. In general, these results indicated that GhSPO11-3 likely respond to salt stress by positively regulating root growth, stomatal response, ROS production and the expression of stress-related genes to cope with adverse conditions in plants.
Collapse
Affiliation(s)
- Zhenzhen Wei
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinjie Shi
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fang Wei
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhuxuan Fan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Liqing Mei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Baoming Tian
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinghui Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gangqiang Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gongyao Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
16
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
17
|
Tian Y, Gu H, Fan Z, Shi G, Yuan J, Wei F, Yang Y, Tian B, Cao G, Huang J. Role of a cotton endoreduplication-related gene, GaTOP6B, in response to drought stress. PLANTA 2019; 249:1119-1132. [PMID: 30552583 DOI: 10.1007/s00425-018-3067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 05/24/2023]
Abstract
Cotton GaTOP6B is involved in cellular endoreduplication and a positive response to drought stress via promoting plant leaf and root growth. Drought is deemed as one of adverse conditions that could cause substantial reductions in crop yields worldwide. Since cotton exhibits a moderate-tolerant phenotype under water-deficit conditions, the plant could therefore be used to characterize potential new genes regulating drought tolerance in crop plants. In this work, GaTOP6B, encoding DNA topoisomerase VI subunit B, was identified in Asian cotton (Gossypium arboreum). Virus-induced gene silencing (VIGS) and overexpression (OE) were used to investigate the biological function of GaTOP6B in G. arboreum and Arabidopsis thaliana under drought stress. The GaTOP6B-silencing plants showed a reduced ploidy level, and displayed a compromised tolerance phenotype including lowered relative water content (RWC), decreased proline content and antioxidative enzyme activity, and an increased malondialdehyde (MDA) content under drought stress. GaTOP6B-overexpressing Arabidopsis lines, however, had increased ploidy levels, and were more tolerant to drought treatment, associated with improved RWC maintenance, higher proline accumulation, and reduced stomatal aperture under drought stress. Transcriptome analysis showed that genes involved in the processes like cell cycle, transcription and signal transduction, were substantially up-regulated in GaTOP6B-overexpressing Arabidopsis, promoting plant growth and development. More specifically, under drought stress, the genes involved in the biosynthesis of secondary metabolites such as phenylpropanoid, starch and sucrose were selectively enhanced to improve tolerance in plants. Taken together, the results demonstrated that GaTOP6B could coordinately regulate plant leaf and root growth via cellular endoreduplication, and positively respond to drought stress. Thus, GaTOP6B could be a competent candidate gene for improvement of drought tolerance in crop species.
Collapse
Affiliation(s)
- Yanfei Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huihui Gu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhuxuan Fan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yan Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinyong Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
18
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
19
|
Singh B, Khurana P, Khurana JP, Singh P. Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 2018; 23:411-428. [PMID: 29116579 PMCID: PMC5904086 DOI: 10.1007/s12192-017-0854-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Brinderjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
20
|
Parveda M, Kiran B, Punita DL, Kavi Kishor PB. Overexpression of SbAP37 in rice alleviates concurrent imposition of combination stresses and modulates different sets of leaf protein profiles. PLANT CELL REPORTS 2017; 36:773-786. [PMID: 28393269 DOI: 10.1007/s00299-017-2134-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
SbAP37 transcription factor contributes to a combination of abiotic stresses when applied simultaneously in rice. It modulates a plethora of proteins that might regulate the downstream pathways to impart salt stress tolerance. APETALA type of transcription factor was isolated from Sorghum bicolor (SbAP37), overexpressed in rice using a salt inducible abscisic acid 2 (ABA2) promoter through Agrobacterium tumefaciens following in planta method. Transgenics were confirmed by PCR amplification of SbAP37, hygromycin phosphotransferase (hptII) marker and ABA2 promoter and DNA blot analysis. Plants were exposed to 150 mM NaCl coupled with high day/night 36 ± 2/25 ± 2 °C temperatures and also drought stress by withholding water for 1-week separately at the booting stage. SbAP37 expression was 2.8- to 4.7-folds higher in transgenic leaf under salt, but 1.8- to 3.3-folds higher in roots under drought stress. Native gene expression analysis showed that it is expressed more in stem than in roots and leaves under 150 mM NaCl and 6% PEG stress. In the present study, proteomic analysis of transgenics exposed to 150 mM NaCl coupled with elevated temperatures was taken up using quadrupole time-of-flight (Q-TOF) mass spectrometry (MS). The leaf proteome revealed 11 down regulated, 26 upregulated, 101 common (shared), 193 newly synthesized proteins in transgenics besides 368 proteins in untransformed plants. Some of these protein sets appeared different and unique to combined stresses. Our results suggest that the SbAP37 has the potential to improve combined stress tolerance without causing undesirable phenotypic characters when used under the influence of ABA2 promoter.
Collapse
Affiliation(s)
| | - B Kiran
- Bayer BioScience Pvt. Ltd., Madhapur, Hyderabad, 500 081, India
| | - D L Punita
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, 500 007, India.
| |
Collapse
|
21
|
Xia H, Huang W, Xiong J, Yan S, Tao T, Li J, Wu J, Luo L. Differentially Methylated Epiloci Generated from Numerous Genotypes of Contrasting Tolerances Are Associated with Osmotic-Tolerance in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:11. [PMID: 28154573 PMCID: PMC5243842 DOI: 10.3389/fpls.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an essential role in plant responses to environmental stress. Since drought develops into a rising problem in rice cultivation, investigations on genome-wide DNA methylation in responses to drought stress and in-depth explorations of its association with drought-tolerance are required. For this study, 68 rice accessions were used for an evaluation of their osmotic-tolerance related to 20% PEG6000 simulated physiological traits. The tolerant group revealed significantly higher levels of total antioxidant capacity and higher contents of H2O2 in both normal and osmotic-stressed treatments, as well as higher survival ratios. We furthermore investigated the DNA methylation status in normal, osmotic-stressed, and re-watering treatments via the methylation-sensitive amplification polymorphism (MSAP). The averaged similarity between two rice accessions from tolerant and susceptible groups was approximately 50%, similar with that between two accessions within the tolerant/susceptible group. However, the proportion of overall tolerance-associated epiloci was only 5.2% of total epiloci. The drought-tolerant accessions revealed lower DNA methylation levels in the stressed condition and more de-methylation events when they encountered osmotic stress, compared to the susceptible group. During the recovery process, the drought-tolerant accessions possessed more re-methylation events. Fourteen differentially methylated epiloci (DME) were, respectively, generated in normal, osmotic-stressed, and re-watering treatments. Approximately, 35.7% DME were determined as tolerance-associated epiloci. Additionally, rice accessions with lower methylation degrees on DME in the stressed conditions had a higher survival ratio compared to these with higher methylation degrees. This result is consistent with the lower DNA methylation levels of tolerant accessions observed in the stressed treatment. Methylation degrees on a differentially methylated epilocus may further influence gene regulation in the rice seedling in response to the osmotic stress. All these results indicate that DME generated from a number of genotypes could have higher probabilityies for association with stress-tolerance, rather than DME generated from two genotypes of contrasting tolerance. The DME found in this study are suspected to be good epigenetic markers for the application in drought-tolerant rice breeding. They could also be a valuable tool to study the epigenetic differentiation in the drought-tolerance between upland and lowland rice ecotypes.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Weixia Huang
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shuaigang Yan
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Tao
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jinhong Wu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
- *Correspondence: Lijun Luo
| |
Collapse
|
22
|
Bhattacharjee A, Sharma R, Jain M. Over-Expression of OsHOX24 Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:628. [PMID: 28484484 PMCID: PMC5399076 DOI: 10.3389/fpls.2017.00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
Homeobox transcription factors play critical roles in plant development and abiotic stress responses. In the present study, we raised rice transgenics over-expressing stress-responsive OsHOX24 gene (rice homeodomain-leucine zipper I sub-family member) and analyzed their response to various abiotic stresses at different stages of development. At the seed germination stage, rice transgenics over-expressing OsHOX24 exhibited enhanced sensitivity to abiotic stress conditions and abscisic acid as compared to wild-type (WT). OsHOX24 over-expression rice seedlings showed reduced root and shoot growth under salinity and desiccation stress (DS) conditions. Various physiological and phenotypic assays confirmed higher susceptibility of rice transgenics toward abiotic stresses as compared to WT at mature and reproductive stages of rice development too. Global gene expression profiling revealed differential regulation of several genes in the transgenic plants under control and DS conditions. Many of these differentially expressed genes were found to be involved in transcriptional regulatory activities, besides carbohydrate, nucleic acid and lipid metabolic processes and response to abiotic stress and hormones. Taken together, our findings highlighted the role of OsHOX24 in regulation of abiotic stress responses via modulating the expression of stress-responsive genes in rice.
Collapse
Affiliation(s)
| | | | - Mukesh Jain
- National Institute of Plant Genome ResearchNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Mukesh Jain, ;
| |
Collapse
|
23
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
24
|
Robert T, Vrielynck N, Mézard C, de Massy B, Grelon M. A new light on the meiotic DSB catalytic complex. Semin Cell Dev Biol 2016; 54:165-76. [DOI: 10.1016/j.semcdb.2016.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
|
25
|
Miri M, Janakirama P, Held M, Ross L, Szczyglowski K. Into the Root: How Cytokinin Controls Rhizobial Infection. TRENDS IN PLANT SCIENCE 2016; 21:178-186. [PMID: 26459665 DOI: 10.1016/j.tplants.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 05/13/2023]
Abstract
Leguminous plants selectively initiate primary responses to rhizobial nodulation factors (NF) that ultimately lead to symbiotic root nodule formation. Functioning downstream, cytokinin has emerged as the key endogenous plant signal for nodule differentiation, but its role in mediating rhizobial entry into the root remains obscure. Nonetheless, such a role is suggested by aberrant infection phenotypes of plant mutants with defects in cytokinin signaling. We postulate that cytokinin participates in orchestrating signaling events that promote rhizobial colonization of the root cortex and limit the extent of subsequent infection at the root epidermis, thus maintaining homeostasis of the symbiotic interaction. We further argue that cytokinin signaling must have been crucial during the evolution of plant cell predisposition for rhizobial colonization.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Current address: Intrexon Corporation, 329 Oyster Pt. Blvd., South San Francisco, CA 94080, USA
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada.
| |
Collapse
|
26
|
Bhattacharjee A, Khurana JP, Jain M. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:627. [PMID: 27242831 PMCID: PMC4862318 DOI: 10.3389/fpls.2016.00627] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/25/2016] [Indexed: 05/21/2023]
Abstract
Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22, and OsHOX24. These genes were highly up-regulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA), auxin, salicylic acid, and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG). Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses.
Collapse
Affiliation(s)
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South CampusNew Delhi, India
| | - Mukesh Jain
- National Institute of Plant Genome ResearchNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Mukesh Jain,
| |
Collapse
|
27
|
Xue L, Ren H, Li S, Gao M, Shi S, Chang E, Wei Y, Yao X, Jiang Z, Liu J. Comparative proteomic analysis in Miscanthus sinensis exposed to antimony stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 201:150-60. [PMID: 25800729 DOI: 10.1016/j.envpol.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 05/17/2023]
Abstract
To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity.
Collapse
Affiliation(s)
- Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Sheng Li
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Ming Gao
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Wei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
28
|
Vriet C, Hennig L, Laloi C. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 2015; 72:1261-73. [PMID: 25578097 PMCID: PMC11113909 DOI: 10.1007/s00018-014-1792-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
Abstract
Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.
Collapse
Affiliation(s)
- Cécile Vriet
- BVME UMR 7265, Lab Genet Biophys Plantes, Aix Marseille Université, Marseille, 13284, France,
| | | | | |
Collapse
|
29
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
30
|
Wu Z, Ji J, Tang D, Wang H, Shen Y, Shi W, Li Y, Tan X, Cheng Z, Luo Q. OsSDS is essential for DSB formation in rice meiosis. FRONTIERS IN PLANT SCIENCE 2015; 6:21. [PMID: 25691887 PMCID: PMC4315026 DOI: 10.3389/fpls.2015.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
SDS is a meiosis specific cyclin-like protein and required for DMC1 mediated double-strand break (DSB) repairing in Arabidopsis. Here, we found its rice homolog, OsSDS, is essential for meiotic DSB formation. The Ossds mutant is normal in vegetative growth but both male and female gametes are inviable. The Ossds meiocytes exhibit severe defects in homologous pairing and synapsis. No γH2AX immunosignals in Ossds meiocytes together with the suppression of chromosome fragmentation in Ossds-1 Osrad51c, both provide strong evidences that OsSDS is essential for meiotic DSB formation. Immunostaining investigations revealed that meiotic chromosome axes are normally formed but both SC installation and localization of recombination elements are failed in Ossds. We suspected that this cyclin protein has been differentiated pretty much between monocots and dicots on its function in meiosis.
Collapse
Affiliation(s)
- Zhigang Wu
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xuelin Tan
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China e-mail:
| | - Qiong Luo
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
- Qiong Luo, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Heilongtan, Guandu District, Kunming 650201, China e-mail:
| |
Collapse
|
31
|
Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasad PVV, Bowden R, Fritz A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 2014; 15:97. [PMID: 25384418 PMCID: PMC4234900 DOI: 10.1186/s12863-014-0097-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND High temperature (heat) stress during grain filling is a major problem in most of the wheat growing areas. Developing heat tolerant cultivars has become a principal breeding goal in the Southern and Central Great Plain areas of the USA. Traits associated with high temperature tolerance can be used to develop heat tolerant cultivars in wheat. The present study was conducted to identify chromosomal regions associated with thylakoid membrane damage (TMD), plasmamembrane damage (PMD), and SPAD chlorophyll content (SCC), which are indicative of high temperature tolerance. RESULTS In this study we have reported one of the first linkage maps in wheat using genotype by sequencing SNP (GBS-SNP) markers to extreme response to post anthesis heat stress conditions. The linkage map was comprised of 972 molecular markers (538 Bin, 258 AFLPs, 175 SSRs, and an EST). The genotypes of the RIL population showed strong variation for TMD, SCC and PMD in both generations (F10 and F9). Composite interval mapping identified five QTL regions significantly associated with response to heat stress. Associations were identified for PMD on chromosomes 7A, 2B and 1D, SCC on 6A, 7A, 1B and 1D and TMD on 6A, 7A and 1D. The variability (R(2)) explained by these QTL ranged from 11.9 to 30.6% for TMD, 11.4 to 30.8% for SCC, and 10.5 to 33.5% for PMD. Molecular markers Xbarc113 and AFLP AGCTCG-347 on chromosome 6A, Xbarc121 and Xbarc49 on 7A, gwm18 and Bin1130 on 1B, Bin178 and Bin81 on 2B and Bin747 and Bin1546 on 1D were associated with these QTL. CONCLUSION The identified QTL can be used for marker assisted selection in breeding wheat for improved heat tolerance in Ventnor or Karl 92 genetic background.
Collapse
Affiliation(s)
- Shyamal Krishna Talukder
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Md Ali Babar
- Department of Agronomy, University of Florida, Gainesville, Florida, USA.
| | | | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | | | - Robert Bowden
- USDA/ARS/Hard Winter Wheat Genetics Research Unit, Kansas State University, Manhattan, KS, 66506, USA.
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
32
|
Srivastava SK, Wolinski P, Pereira A. A strategy for genome-wide identification of gene based polymorphisms in rice reveals non-synonymous variation and functional genotypic markers. PLoS One 2014; 9:e105335. [PMID: 25237817 PMCID: PMC4169549 DOI: 10.1371/journal.pone.0105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
The genetic diversity of plants has traditionally been employed to improve crop plants to suit human needs, and in the future feed the increasing population and protect crops from environmental stresses and climate change. Genome-wide sequencing is a reality and can be used to make association to crop traits to be utilized by high-throughput marker based selection methods. This study describes a strategy of using next generation sequencing (NGS) data from the rice genome to make comparisons to the high-quality reference genome, identify functional polymorphisms within genes that might result in function changes and be used to study correlations to traits and employed in genetic mapping. We analyzed the NGS data of Oryza sativa ssp indica cv. G4 covering 241 Mb with ∼20X coverage and compared to the reference genome of Oryza sativa ssp. japonica to describe the genome-wide distribution of gene-based single nucleotide polymorphisms (SNPs). The analysis shows that the 63% covered genome consists of 1.6 million SNPs with 6.9 SNPs/Kb, and including 80,146 insertions and 92,655 deletions (INDELs) genome-wide. There are a total of 1,139,801 intergenic SNPs, 295,136 SNPs in intronic/non-coding regions, 195,098 in coding regions, 23,242 SNPs at the five-prime (5′) UTR regions and 22,686 SNPs at the three-prime (3′) UTR region. SNP variation was found in 40,761 gene loci, which include 75,262 synonymous and 119,836 non-synonymous changes, and functional reading frame changes through 3,886 inducing STOP-codon (isSNP) and 729 preventing STOP-codon (psSNP) variation. There are quickly evolving 194 high SNP hotspot genes (>100 SNPs/gene), and 1,513 out of 2,458 transcription factors displaying 2,294 non-synonymous SNPs that can be a major source of phenotypic diversity within the species. All data is searchable at https://plantstress-pereira.uark.edu/oryza2. We envision that this strategy will be useful for the identification of genes for crop traits and molecular breeding of rice cultivars.
Collapse
Affiliation(s)
- Subodh K. Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Pawel Wolinski
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Andy Pereira
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
34
|
Han M, Kim CY, Lee J, Lee SK, Jeon JS. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells 2014; 37:532-9. [PMID: 25081037 PMCID: PMC4132305 DOI: 10.14348/molcells.2014.0128] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022] Open
Abstract
We isolated a rice (Oryza sativa L.) WRKY gene which is highly upregulated in senescent leaves, denoted OsWRKY42. Analysis of OsWRKY42-GFP expression and its effects on transcriptional activation in maize protoplasts suggested that the OsWRKY42 protein functions as a nuclear transcriptional repressor. OsWRKY42-overexpressing (OsWR KY42OX) transgenic rice plants exhibited an early leaf senescence phenotype with accumulation of the reactive oxygen species (ROS) hydrogen peroxide and a reduced chlorophyll content. Expression analysis of ROS producing and scavenging genes revealed that the metallothionein genes clustered on chromosome 12, especially OsMT1d, were strongly repressed in OsWRKY42OX plants. An OsMT1d promoter:LUC construct was found to be repressed by OsWRKY42 overexpression in rice protoplasts. Finally, chromatin immunoprecipitation analysis demonstrated that OsWRKY42 binds to the W-box of the OsMT1d promoter. Our results thus suggest that OsWRKY42 represses OsMT1d-mediated ROS scavenging and thereby promotes leaf senescence in rice.
Collapse
Affiliation(s)
- Muho Han
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Junok Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
35
|
Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 2014; 9:e92900. [PMID: 24663444 PMCID: PMC3963979 DOI: 10.1371/journal.pone.0092900] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 12/28/2022] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional proteins encoded by large gene family in plants, which play important role in cellular detoxification of several endobiotic and xenobiotic compounds. Previously, we suggested the diverse roles of rice GST gene family members in plant development and various stress responses based on their differential expression. In this study, we report the functional characterization of a rice tau class GST gene, OsGSTU4. OsGSTU4 fusion protein was found to be localized in nucleus and cytoplasm. The over-expression of OsGSTU4 in E. coli resulted in better growth and higher GST activity under various stress conditions. Further, we raised over-expression transgenic Arabidopsis plants to reveal its in planta function. These transgenic lines showed reduced sensitivity towards plant hormones, auxin and abscisic acid. Various analyses revealed improved tolerance in transgenic Arabidopsis plants towards salinity and oxidative stresses, which may be attributed to the lower accumulation of reactive oxygen species and enhanced GST activity. In addition, microarray analysis revealed up-regulation of several genes involved in stress responses and cellular detoxification processes in the transgenic plants as compared to wild-type. These results suggest that OsGSTU4 can be used as a good candidate for the generation of stress-tolerant crop plants.
Collapse
Affiliation(s)
- Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Annapurna Sahoo
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Ragunathan Devendran
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
36
|
Sprink T, Hartung F. The splicing fate of plant SPO11 genes. FRONTIERS IN PLANT SCIENCE 2014; 5:214. [PMID: 25018755 PMCID: PMC4071758 DOI: 10.3389/fpls.2014.00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/30/2014] [Indexed: 05/02/2023]
Abstract
Toward the global understanding of plant meiosis, it seems to be essential to decipher why all as yet sequenced plants need or at least encode for two different meiotic SPO11 genes. This is in contrast to mammals and fungi, where only one SPO11 is present. Both SPO11 in Arabidopsis thaliana are essential for the initiation of double strand breaks (DSBs) during the meiotic prophase. In nearly all eukaryotic organisms DSB induction during prophase I by SPO11 leads to meiotic DSB repair, thereby ensuring the formation of a necessary number of crossovers (CO) as physical connections between the homologous chromosomes. We aim to investigate the specific functions and evolution of both SPO11 genes in land plants. Therefore, we identified and cloned the respective orthologous genes from Brassica rapa, Carica papaya, Oryza sativa, and Physcomitrella patens. In parallel we determined the full length cDNA sequences of SPO11-1 and -2 from all of these plants by RT-PCR. During these experiments we observed that the analyzed plants exhibit a pattern of alternative splicing products of both SPO11 mRNAs. Such an aberrant splicing has previously been described for Arabidopsis and therefore seems to be conserved throughout evolution. Most of the splicing forms of SPO11-1 and -2 seem to be non-functional as they either showed intron retention (IR) or shortened exons. However, the positional distribution and number of alternative splicing events vary strongly between the different plants. The cDNAs showed in most cases premature termination codons (PTCs) due to frameshift. Nevertheless, in some cases we found alternatively spliced but functional cDNAs. These findings let us suggest that alternative splicing of SPO11 depends on the respective gene sequence and on the plant species. Therefore, this conserved mechanism might play a role concerning regulation of SPO11.
Collapse
Affiliation(s)
- Thorben Sprink
- *Correspondence: Thorben Sprink, Biosafety in Plant Biotechnology, Julius Kuehn Institute, Erwin-Baur Str. 27, Quedlinburg 06484, Germany e-mail:
| | | |
Collapse
|
37
|
Sharma R, Priya P, Jain M. Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. PLANTA 2013; 238:871-84. [PMID: 23918184 DOI: 10.1007/s00425-013-1940-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/17/2013] [Indexed: 05/20/2023]
Abstract
Glutaredoxins (GRXs) are the ubiquitous oxidoreductase enzymes, which play an important role in defense against various stresses. Here, we report the role of a CC-type GRX gene from rice, OsGRX8, in abiotic stress tolerance. OsGRX8 protein was found to be localized in nucleus and cytosol and its gene expression is induced by various stress conditions and plant hormone auxin. The over-expression of OsGRX8 in Arabidopsis plants conferred reduced sensitivity to auxin and stress hormone, abscisic acid. In addition, the transgenic Arabidopsis plants exhibited enhanced tolerance to various abiotic stresses, including salinity, osmotic and oxidative stress. Further, the transgenic RNAi rice plants exhibited increased susceptibility to various abiotic stresses, which further confirmed the role of OsGRX8 in abiotic stress responses. The microarray data analysis revealed that expression of a large number of auxin-responsive, known stress-associated and transcription factor encoding genes was altered in GRX transgenic Arabidopsis plants in response to exogenous auxin and stress conditions as compared to wild-type plants. Altogether, these findings suggest the role of OsGRX8 in regulating abiotic stress response and may be used to engineer stress tolerance in crop plants.
Collapse
Affiliation(s)
- Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|
38
|
Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis. Mol Genet Genomics 2013; 288:437-44. [PMID: 23801409 DOI: 10.1007/s00438-013-0761-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
Spo11 is considered responsible for initiation of meiotic recombination in higher organisms, but previous analysis using spo11 (RIP) mutants suggests that the his-3 region of Neurospora crassa experiences spo11-independent recombination. However, despite possessing several stop codons, it is conceivable that the mutants are not completely null. Also, since lack of spo11 interferes with chromosomal pairing and proper segregation at Meiosis I, spores can be partially diploid for a period after meiosis. Thus, it is possible that the recombination observed could be an abnormal event, occurring during the period of aneuploidy rather than during meiosis. To test the former hypothesis, we generated spo11 deletion homozygotes. Using crosses heteroallelic for his-3 mutations, we showed that His(+) progeny are generated in spo11 deletion homozygotes at a frequency at least as high as in wild type and, as in the spo11 (RIP) mutants, local crossing over is not reduced. To test the latter hypothesis, we utilised mutations in either end of a histone H1-GFP fusion gene, inserted between the recombination hotspot cog and his-3, in which GFP(+) spores arise as a result of recombination in a cross between the two GFP alleles. In a control cross homozygous for spo11 (+), the frequency at which GFP(+) spores arise is comparable to the frequency of His(+) spores and glowing nuclei first appear during prophase, prior to metaphase I, as expected for a product of meiotic recombination. Similarly in spo11 deletion homozygotes, GFP(+) spores arise at high frequency and glowing nuclei are first seen before metaphase, indicating that allelic recombination occurs during meiosis in the absence of spo11. We have therefore shown that spo11 is not essential for either his-3 allelic recombination or crossing over in the vicinity of his-3, and that spo11-independent allelic recombination is meiotic, indicating that there is a spo11-independent mechanism for initiation of recombination in Neurospora.
Collapse
|
39
|
Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N. Transcriptome analysis of developing ovules in rice isolated by laser microdissection. PLANT & CELL PHYSIOLOGY 2013; 54:750-65. [PMID: 23411663 DOI: 10.1093/pcp/pct029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Comprehensive genome-wide gene expression profiles during plant male gametogenesis have been thoroughly analyzed over the last decade. In contrast, gene expression profiles during female gametogenesis have been studied relatively little, and our knowledge concerning plant female gametogenesis is limited. We determined the genome-wide gene expression profiles of developing ovules containing female gametophytes from the megaspore mother cell at the pre-meiotic stage to the mature embryo sac in rice (Oryza sativa) using microarrays. In order to separate ovules from scutellum, we used a laser microdissection (LM) technique. Dynamic gene expression was revealed in developing ovules, and a major transition of the transcriptome was observed between middle and late meiotic stages, where many genes were down-regulated >10-fold. Many potential players in female gametogenesis, that showed dynamic or enriched expression, were highlighted. We identified the temporal and dramatic up-regulation of a subset of transposable elements during female meiotic stages that were not observed in males. Transcription factor genes enriched in developing ovules were also uncovered, which may play crucial roles during female gametogenesis. This is the first report of comprehensive genome-wide gene expression profiles during female gametogenesis useful for plant reproductive studies. Combined with additional experiments, our data may provide important clues to understand female gametogenesis in plants.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | |
Collapse
|
40
|
Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. PLANT, CELL & ENVIRONMENT 2012; 35:1912-31. [PMID: 22530593 DOI: 10.1111/j.1365-3040.2012.02525.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nuclear-encoded chloroplast small heat shock proteins (sHSPs) are present in all plant species from algae to angiosperms. Expression analysis shows that the wheat chloroplastic sHSP (HSP26) is highly inducible by heat stress in almost all the vegetative and generative tissues and is also expressed constitutively in certain developmental growth stages. We characterize wheat chloroplastic sHSP 26 through transgenic approach using Arabidopsis and report cloning of the promoter and its characterization. Transgenic Arabidopsis plants were substantially tolerant under continuous high temperature regimen than wild-type plants, as measured by photosystem II (PSII) activity, accumulation of more photosynthetic pigments, higher biomass and seed yield. Transgenic plants produced bold seeds under high temperature, having higher germination potential than the wild-type plants. Further, antisense Arabidopsis plants showed negligible tolerance even for non-lethal heat shock, impaired in basal thermo-tolerance, and accumulated less biomass and seed yield under normal growth conditions. Promoter analysis revealed the presence of several heat and other abiotic stress responsive cis-acting elements along with developmental stage and tissue-specific elements. Analysis of promoter through GUS reporter system in both transgenic rice and Arabidopsis further confirms the role of chloroplastic sHsp26 in heat and other abiotic stresses as well as during seed maturation and germination. Genome-wide expression analysis of overexpression Arabidopsis plants revealed that the transcriptome remained unchanged in the transgenic plants and the tolerance was due to the overexpression of chloroplastic heat shock protein (HSP) only.
Collapse
Affiliation(s)
- Harsh Chauhan
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India
| | | | | | | | | |
Collapse
|
41
|
Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2012; 109:16360-5. [PMID: 22988090 DOI: 10.1073/pnas.1202041109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Environmental stress often leads to an increased production of reactive oxygen species that are involved in plastid-to-nucleus retrograde signaling. Soon after the release of singlet oxygen ((1)O(2)) in chloroplasts of the flu mutant of Arabidopsis, reprogramming of nuclear gene expression reveals a rapid transfer of signals from the plastid to the nucleus. We have identified extraplastidic signaling constituents involved in (1)O(2)-initiated plastid-to-nucleus signaling and nuclear gene activation after mutagenizing a flu line expressing the luciferase reporter gene under the control of the promoter of a (1)O(2)-responsive AAA-ATPase gene (At3g28580) and isolating second-site mutations that lead to a constitutive up-regulation of the reporter gene or abrogate its (1)O(2)-dependent up-regulation. One of these mutants, caa39, turned out to be a weak mutant allele of the Topoisomerase VI (Topo VI) A-subunit gene with a single amino acid substitution. Transcript profile analysis of flu and flu caa39 mutants revealed that Topo VI is necessary for the full activation of AAA-ATPase and a set of (1)O(2)-responsive transcripts in response to (1)O(2). Topo VI binds to the promoter of the AAA-ATPase and other (1)O(2)-responsive genes, and hence could directly regulate their expression. Under photoinhibitory stress conditions, which enhance the production of (1)O(2) and H(2)O(2), Topo VI regulates (1)O(2)-responsive and H(2)O(2)-responsive genes in a distinct manner. These results suggest that Topo VI acts as an integrator of multiple signals generated by reactive oxygen species formed in plants under adverse environmental conditions.
Collapse
|
42
|
Shingu Y, Tokai T, Agawa Y, Toyota K, Ahamed S, Kawagishi-Kobayashi M, Komatsu A, Mikawa T, Yamamoto MT, Wakasa K, Shibata T, Kusano K. The double-stranded break-forming activity of plant SPO11s and a novel rice SPO11 revealed by a Drosophila bioassay. BMC Mol Biol 2012; 13:1. [PMID: 22248237 PMCID: PMC3273433 DOI: 10.1186/1471-2199-13-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/16/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND SPO11 is a key protein for promoting meiotic recombination, by generating chromatin locus- and timing-specific DNA double-strand breaks (DSBs). The DSB activity of SPO11 was shown by genetic analyses, but whether SPO11 exerts DSB-forming activity by itself is still an unanswered question. DSB formation by SPO11 has not been detected by biochemical means, probably because of a lack of proper protein-folding, posttranslational modifications, and/or specific SPO11-interacting proteins required for this activity. In addition, plants have multiple SPO11-homologues. RESULTS To determine whether SPO11 can cleave DNA by itself, and to identify which plant SPO11 homologue cleaves DNA, we developed a Drosophila bioassay system that detects the DSB signals generated by a plant SPO11 homologue expressed ectopically. We cytologically and genetically demonstrated the DSB activities of Arabidopsis AtSPO11-1 and AtSPO11-2, which are required for meiosis, in the absence of other plant proteins. Using this bioassay, we further found that a novel SPO11-homologue, OsSPO11D, which has no counterpart in Arabidopsis, displays prominent DSB-forming activity. Quantitative analyses of the rice SPO11 transcripts revealed the specific increase in OsSPO11D mRNA in the anthers containing meiotic pollen mother cells. CONCLUSIONS The Drosophila bioassay system successfully demonstrated that some plant SPO11 orthologues have intrinsic DSB activities. Furthermore, we identified a novel SPO11 homologue, OsSPO11D, with robust DSB activity and a possible meiotic function.
Collapse
Affiliation(s)
- Yoshinori Shingu
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Tokai
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Yasuo Agawa
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Kentaro Toyota
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Selina Ahamed
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | | | - Akira Komatsu
- National Institute of Crop Science, 2-1-8 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tsutomu Mikawa
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masa-Toshi Yamamoto
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Kyo Wakasa
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kohji Kusano
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| |
Collapse
|
43
|
Giri J, Vij S, Dansana PK, Tyagi AK. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. THE NEW PHYTOLOGIST 2011; 191:721-732. [PMID: 21534973 DOI: 10.1111/j.1469-8137.2011.03740.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• The inbuilt mechanisms of plant survival have been exploited for improving tolerance to abiotic stresses. Stress-associated proteins (SAPs), containing A20/AN1 zinc-finger domains, confer abiotic stress tolerance in different plants, however, their interacting partners and downstream targets remain to be identified. • In this study, we have investigated the subcellular interactions of rice SAPs and their interacting partner using yeast two-hybrid and fluorescence resonance energy transfer (FRET) approaches. Their efficacy in improving abiotic stress tolerance was analysed in transgenic Arabidopsis plants. Regulation of gene expression by genome-wide microarray in transgenics was used to identify downstream targets. • It was found that the A20 domain mediates the interaction of OsSAP1 with self, its close homolog OsSAP11 and a rice receptor-like cytoplasmic kinase, OsRLCK253. Such interactions between OsSAP1/11 and with OsRLCK253 occur at nuclear membrane, plasma membrane and in nucleus. Functionally, both OsSAP11 and OsRLCK253 could improve the water-deficit and salt stress tolerance in transgenic Arabidopsis plants via a signaling pathway affecting the expression of several common endogenous genes. • Components of a novel stress-responsive pathway have been identified. Their stress-inducible expression provided the protection against yield loss in transgenic plants, indicating the agronomic relevance of OsSAP11 and OsRLCK253 in conferring abiotic stress tolerance.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Arabidopsis/genetics
- Arabidopsis/physiology
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- Cells, Cultured
- Droughts
- Fluorescence Resonance Energy Transfer
- Gene Expression Regulation, Plant/physiology
- Genes, Plant/genetics
- Germination/physiology
- Oligonucleotide Array Sequence Analysis
- Onions/genetics
- Onions/metabolism
- Oryza/genetics
- Oryza/physiology
- Oryza/ultrastructure
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Plants, Genetically Modified/ultrastructure
- Protein Interaction Mapping
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Salt Tolerance
- Seeds/genetics
- Seeds/physiology
- Signal Transduction
- Stress, Physiological
- Transcriptome
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Jitender Giri
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prasant K Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
44
|
An XJ, Deng ZY, Wang T. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One 2011; 6:e20327. [PMID: 21637817 PMCID: PMC3102714 DOI: 10.1371/journal.pone.0020327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/17/2022] Open
Abstract
DNA topoisomerase VI from Archaea, a heterotetrameric complex composed of two TopVIA and two TopVIB subunits, is involved in altering DNA topology during replication, transcription and chromosome segregation by catalyzing DNA strand transfer through transient double-strand breaks. The sequenced yeast and animal genomes encode only one homologue of the archaeal TopVIA subunit, namely Spo11, and no homologue of the archaeal TopVIB subunit. In yeast, Spo11 is essential for initiating meiotic recombination and this function appears conserved among other eukaryotes. In contrast to yeast and animals, studies in Arabidopsis and rice have identified three Spo11/TopVIA homologues and one TopVIB homologue in plants. Here, we further identified two novel Spo11/TopVIA homologues (named OsSpo11-4 and OsSpo11-5, respectively) that exist just in the monocot model plant Oryza sativa, indicating that at least five Spo11/TopVIA homologues are present in the rice genome. To reveal the biochemical function of the two novel Spo11/TopVIA homologues, we first examined the interactions among OsSpo11-1, OsSpo11-4, OsSpo11-5, and OsTopVIB by yeast two-hybrid assay. The results showed that OsSpo11-4 and OsTopVIB can self-interact strongly and among the 3 examined OsSpo11 proteins, only OsSpo11-4 interacted with OsTopVIB. Pull-down assay confirmed the interaction between OsSpo11-4 and OsTopVIB, which indicates that OsSpo11-4 may interact with OsTopVIB in vivo. Further in vitro enzymatic analysis revealed that among the above 4 proteins, only OsSpo11-4 exhibited double-strand DNA cleavage activity and its enzymatic activity appears dependent on Mg2+ and independent of OsTopVIB, despite its interaction with OsTopVIB. We further analyzed the biological function of OsSpo11-4 by RNA interference and found that down-regulated expression of OsSpo11-4 led to defects in male meiosis, indicating OsSpo11-4 is required for meiosis.
Collapse
Affiliation(s)
- Xiao Jing An
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
45
|
ZHU LF, HE X, YUAN DJ, XU L, XU L, TU LL, SHEN GX, ZHANG H, ZHANG XL. Genome-Wide Identification of Genes Responsive to ABA and Cold/Salt Stresses in Gossypium hirsutum by Data-Mining and Expression Pattern Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60030-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development. PLANT & CELL PHYSIOLOGY 2010; 51:2060-81. [PMID: 21062870 DOI: 10.1093/pcp/pcq165] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. A decrease in expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes which appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several cyclin-dependent kinases (CDKs), cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the most extensive and most comprehensive data set available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Collapse
Affiliation(s)
- Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kan F, Davidson MK, Wahls WP. Meiotic recombination protein Rec12: functional conservation, crossover homeostasis and early crossover/non-crossover decision. Nucleic Acids Res 2010; 39:1460-72. [PMID: 21030440 PMCID: PMC3045620 DOI: 10.1093/nar/gkq993] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In fission yeast and other eukaryotes, Rec12 (Spo11) is thought to catalyze the formation of dsDNA breaks (DSBs) that initiate homologous recombination in meiosis. Rec12 is orthologous to the catalytic subunit of topoisomerase VI (Top6A). Guided by the crystal structure of Top6A, we engineered the rec12 locus to encode Rec12 proteins each with a single amino acid substitution in a conserved residue. Of 21 substitutions, 10 significantly reduced or abolished meiotic DSBs, gene conversion, crossover recombination and the faithful segregation of chromosomes. Critical residues map within the metal ion-binding pocket toprim (E179A, D229A, D231A), catalytic region 5Y-CAP (R94A, D95A, Y98F) and the DNA-binding interface (K201A, G202E, R209A, K242A). A subset of substitutions reduced DSBs but maintained crossovers, demonstrating crossover homeostasis. Furthermore, a strong separation of function mutation (R304A) suggests that the crossover/non-crossover decision is established early by a protein–protein interaction surface of Rec12. Fission yeast has multiple crossovers per bivalent, and chromosome segregation was robust above a threshold of about one crossover per bivalent, below which non-disjunction occurred. These results support structural and functional conservation among Rec12/Spo11/Top6A family members for the catalysis of DSBs, and they reveal how Rec12 regulates other features of meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Fengling Kan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
48
|
Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z. OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 2010; 119:625-36. [DOI: 10.1007/s00412-010-0284-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/20/2010] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
|
49
|
Shingu Y, Mikawa T, Onuma M, Hirayama T, Shibata T. A DNA-binding surface of SPO11-1, an Arabidopsis SPO11 orthologue required for normal meiosis. FEBS J 2010; 277:2360-74. [PMID: 20423461 DOI: 10.1111/j.1742-4658.2010.07651.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meiotic recombination is initiated by DNA double-stranded breaks introduced by the SPO11 protein. Despite a decade of research, the biochemical functions of SPO11 remain largely unknown, perhaps because of difficulties in studying the functionally active SPO11. Arabidopsis thaliana encodes three SPO11-related proteins, two of which (SPO11-1 and SPO11-2) are required for, and cooperate in, meiosis. We isolated soluble SPO11-1, fused with or free of a trigger factor-tag at its N terminus. The tag-free SPO11-1 needed to interact physically with soluble SPO11-1 to maintain its solubility, suggesting a multimeric active form including a solubilizing protein cofactor. An N-terminal fragment of PRD1, a SPO11-1-interacting protein required for normal meiosis, but not SPO11-2, forms a soluble complex with trigger factor-tagged SPO11-1, but the trigger factor-tag was required for the solubility. Formation of the complex is not sufficient to express endonuclease activity. Trigger factor-tagged SPO11-1 exhibited DNA-binding activities: Glu substitutions of the invariant Gly215 and Arg222 and of the nonconserved Arg223 and Arg226 in a conserved motif (G215E, R222E, R223E, R226E) reduced the DNA-binding ability in vitro, but substitutions of the conserved Arg130 and invariant Tyr103 (a residue in the putative endonuclease-active center) and of Arg residues outside conserved motifs by Glu or Phe (R130E, Y103F, R207E and R254E), did not. Tests for the ability of mutant spo11-1 proteins to complement the silique-defective phenotype of a spo11-1-homozygous mutant in vivo revealed that R222E and G215E induced serious deficiencies, while R130E caused a partial defect in silique formation. Thus, the Gly215, Arg222 and Arg223 residues of SPO11-1 form a DNA-binding surface that is functional in meiosis.
Collapse
Affiliation(s)
- Yoshinori Shingu
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | |
Collapse
|
50
|
Komakhin RA, Komakhina VV. Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae. Mol Biol 2008. [DOI: 10.1134/s0026893308030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|