1
|
Tao J, Lu Z, Su J, Qian X, Zhang Y, Xu Y, Song S, Hang X, Peng X, Chen F. ASIC1a promotes the proliferation of synovial fibroblasts via the ERK/MAPK pathway. J Transl Med 2021; 101:1353-1362. [PMID: 34282280 DOI: 10.1038/s41374-021-00636-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Synovial hyperplasia, a profound alteration in the structure of synovial tissue, is the basis for cumulative joint destruction in rheumatoid arthritis (RA). It is generally accepted that controlling synovial hyperplasia can delay the progression of RA. As one of the most intensively studied isoforms of acid-sensing ion channels (ASICs), ASIC1a contributes to various physiopathologic conditions, including RA, due to its unique property of being permeable to Ca2+. However, the role and the regulatory mechanisms of ASIC1a in synovial hyperplasia are poorly understood. Here, rats induced with adjuvant arthritis (AA) and human primary synovial fibroblasts were used in vivo and in vitro to investigate the role of ASIC1a in the proliferation of RA synovial fibroblasts (RASFs). The results show that the expression of ASIC1a was significantly increased in synovial tissues and RASFs obtained from patients with RA as well as in the synovium of rats with AA. Moreover, extracellular acidification improved the ability of RASFs colony formation and increased the expression of proliferation cell nuclear antigen (PCNA) and Ki67, which was abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1) or ASIC1a-short hairpin RNA (ASIC1a-shRNA), suggesting that extracellular acidification promotes the proliferation of RASFs by activating ASIC1a. In addition, the activation of c-Raf and extracellular signal-regulated protein kinases (ERKs) signaling was blocked with PcTX-1 or ASIC1a-shRNA and the proliferation of RASFs was further inhibited by the ERK inhibitor (U0126), indicating that ERK/MAPK signaling contributes to the proliferation process of RASFs promoted by the activation of ASIC1a. These findings gave us an insight into the role of ASIC1a in the proliferation of RASFs, which may provide solid foundation for ASIC1a as a potential target in the treatment of RA.
Collapse
Affiliation(s)
- Jingjing Tao
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zheng Lu
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jingwen Su
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xuewen Qian
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yihao Zhang
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yayun Xu
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Sujing Song
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoyu Hang
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoqing Peng
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Feihu Chen
- Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
2
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Wu Y, Li H, Wang H, Zhang F, Cao H, Xu S. MSK2 promotes proliferation and tumor formation in squamous cervical cancer via PAX8/RB-E2F1/cyclin A2 axis. J Cell Biochem 2019; 120:11432-11440. [PMID: 30756420 DOI: 10.1002/jcb.28421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Patients with cervical cancer have abnormal cell proliferation and invasion after many years of latency. However, the precise mechanisms remain unclear. Mitogen- and stress-activated kinase 2 (MSK2) is a serine/threonine kinase which displays a phenotype that promotes tumor growth and metastasis in many different types of tumors. The aim of the present study was to determine the effects of MSK2 on the proliferation of cervical cancer cells and elucidate the signaling pathways through which MSK2 exerts its effects in the pathogenesis of squamous cell carcinoma (SCC). Our results confirmed that MSK2 expression was significantly upregulated in cervical cancer cells both in vivo and in vitro. We further found that the expression patterns of paired-box gene 8 (PAX8) and MSK2 were positively correlated in cervical cancer specimens. Moreover, MSK2 knockdown inhibited the phosphorylation of PAX8 and retinoblastoma protein (RB), and suppressed the sequential expressions of cell proliferation factors E2F1 and cyclin A2, resulting in the inhibition of SCC cell proliferation and tumor formation. Thus, this study demonstrates that MSK2 has oncogenic effects in the formation and development of SCC via the PAX8/RB-E2F1/cyclin A2 axis.
Collapse
Affiliation(s)
- Yueli Wu
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong, China
| | - Hongmei Li
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong, China
| | - Hong Wang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong, China
| | - Fenglian Zhang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong, China
| | - Hua Cao
- Department of Obstetrics and Gynecology, Heze Development Zone Central Hospital, Heze, Shandong, China
| | - Shuyun Xu
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, Shandong, China
| |
Collapse
|
4
|
França AJVBDV, De Faveri R, Nunes R, Steimbach VMB, Santin JR, Quintão NLM. The role of kinins in the proliferation of fibroblast primed with TNF in scratch wound assay: Kinins and cell proliferation. Int Immunopharmacol 2018; 65:23-28. [PMID: 30268800 DOI: 10.1016/j.intimp.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the involvement of both B1 and B2 kinins receptors (B1R and B2R) in the fibroblast proliferation induced by the cytokine tumour necrosis factor (TNF) attempting to establish an in vitro model of wound healing. Murine fibroblasts L-929 were cultivated in 24 wells plaque until total confluence (DMEM (Vitrocell®); 5% fetal bovine serum, 5% CO2, 37 °C) and then submitted to the scratch assay. The cells were treated with PBS, TNF (2 ng/mL) and/or mr-TNF antibody (200 μg/mL), or PDTC. The cells received the second set of treatment (3 h later): PBS; 1 μM HOE-140; 1 μM des-Arg9-Leu8-BK (DALBK) or 100 μM PDTC. TNF was able to increase the cell proliferation when compared with the group treated with PBS. The co-treatment with the TNF antibody completely reversed the TNF effect. The TNF-proliferative effect was blocked by B1 (DALBK) and B2 (HOE-140) kinin receptor antagonists administered separately or along, suggesting the involvement of both receptors in the TNF mechanism of action. Furthermore, the treatment with a NF-ĸB inhibitor PDTC completely blocked the cell proliferation. The TNF cell proliferation was incremented with BK (1 μM) treatment, and its effect was totally reversed by HOE-140 treatment. No effect was observed for TNF plus DABK. Eventually, TNF treatment was able to increase TNF level in the growing medium; however, this increase was suppressed by BK treatment. These results suggest that TNF induces cell proliferation and the induced signalling cascade has the B2R participation. All these events seem to be totally dependent on the NF-ĸB activation. These inflammatory mediators can improve the wound healing in the resolution of inflammation.
Collapse
Affiliation(s)
- Ana Julia Von Borell du Vernay França
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil; Cosmethology Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Kašuba V, Milić M, Rozgaj R, Kopjar N, Mladinić M, Žunec S, Vrdoljak AL, Pavičić I, Čermak AMM, Pizent A, Lovaković BT, Želježić D. Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19267-19281. [PMID: 28667585 DOI: 10.1007/s11356-017-9438-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/01/2017] [Indexed: 05/06/2023]
Abstract
We studied the toxic effects of glyphosate in vitro on HepG2 cells exposed for 4 and 24 h to low glyphosate concentrations likely to be encountered in occupational and residential exposures [the acceptable daily intake (ADI; 0.5 μg/mL), residential exposure level (REL; 2.91 μg/mL) and occupational exposure level (OEL; 3.5 μg/mL)]. The assessments were performed using biomarkers of oxidative stress, CCK-8 colorimetric assay for cell proliferation, alkaline comet assay and cytokinesis-block micronucleus (CBMN) cytome assay. The results obtained indicated effects on cell proliferation, both at 4 and 24 h. The levels of primary DNA damage after 4-h exposure were lower in treated vs. control samples, but were not significantly changed after 24 h. Using the CBMN assay, we found a significantly higher number of MN and nuclear buds at ADI and REL after 4 h and a lower number of MN after 24 h. The obtained results revealed significant oxidative damage. Four-hour exposure resulted in significant decrease at ADI [lipid peroxidation and glutathione peroxidase (GSH-Px)] and OEL [lipid peroxidation and level of total antioxidant capacity (TAC)], and 24-h exposure in significant decrease at OEL (TAC and GSH-Px). No significant effects were observed for the level of reactive oxygen species (ROS) and glutathione (GSH) for both treatment, and for 24 h for lipid peroxidation. Taken together, the elevated levels of cytogenetic damage found by the CBMN assay and the mechanisms of primary DNA damage should be further clarified, considering that the comet assay results indicate possible cross-linking or DNA adduct formation.
Collapse
Affiliation(s)
- Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Ružica Rozgaj
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marin Mladinić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Xellia Ltd., Zagreb, Croatia
| | - Suzana Žunec
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ana Lucić Vrdoljak
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivan Pavičić
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ana Marija Marjanović Čermak
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davor Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
6
|
Iori E, Ruzzene M, Zanin S, Sbrignadello S, Pinna LA, Tessari P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015; 33:259-66. [PMID: 26340273 DOI: 10.3109/08977194.2015.1073725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CK2 is a multifunctional, pleiotropic protein kinase involved in the regulation of cell proliferation and survival. Since fibroblasts from Type 1 Diabetes patients (T1DM) with Nephropathy exhibit increased proliferation, we studied cell viability, basal CK2 expression and activity, and response to specific CK2 inhibitors TBB (4,5,6,7-tetrabenzotriazole) and CX4945, in fibroblasts from T1DM patients either with (T1DM+) or without (T1DM-) Nephropathy, and from healthy controls (N). We tested expression and phosphorylation of CK2-specific molecular targets. In untreated fibroblasts from T1DM+, the cell viability was higher than in both N and T1DM-. CK2 inhibitors significantly reduced cell viability in all groups, but more promptly and with a larger effect in T1DM+. Differences in CK2-dependent phosphorylation sites were detected. In conclusion, our results unveil a higher dependence of T1DM+ cells on CK2 for their survival, despite a similar expression and a lower activity of this kinase compared with those of normal cells.
Collapse
Affiliation(s)
| | - Maria Ruzzene
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | - Sofia Zanin
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | | | - Lorenzo Alberto Pinna
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
- c Venetian Institute of Molecular Medicine , Padova , Italy
| | | |
Collapse
|
7
|
Zhang YP, Wang WL, Liu J, Li WB, Bai LL, Yuan YD, Song SX. Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca2+ signaling. Thromb Res 2013; 131:64-71. [DOI: 10.1016/j.thromres.2012.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 01/21/2023]
|
8
|
Philippova MM, Khachin DP, Sazonova OV, Blishchenko EY, Yatskin ON, Nazimov IV, Karelin AA, Ivanov VT, Rasstrigin NA, Pivnik AV. Fragments of functional proteins in a primary culture of human erythrocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1068162008020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES, Heimann AS, Devi LA. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS JOURNAL 2010; 12:658-69. [PMID: 20811967 DOI: 10.1208/s12248-010-9217-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/22/2010] [Indexed: 01/08/2023]
Abstract
Most bioactive peptides are generated by proteolytic cleavage of large precursor proteins followed by storage in secretory vesicles from where they are released upon cell stimulation. Examples of such bioactive peptides include peptide neurotransmitters, classical neuropeptides, and peptide hormones. In the last decade, it has become apparent that the breakdown of cytosolic proteins can generate peptides that have biological activity. A case in point and the focus of this review are hemoglobin-derived peptides. In vertebrates, hemoglobin (Hb) consists of a tetramer of two α- and two β-globin chains each containing a prosthetic heme group, and is primarily involved in oxygen delivery to tissues and in redox reactions (Schechter Blood 112:3927-3938, 2008). The presence of α- and/or β-globin chain in tissues besides red blood cells including rodent and human brain and peripheral tissues (Liu et al. Proc Natl Acad Sci USA 96:6643-6647, 1999; Newton et al. J Biol Chem 281:5668-5676, 2006; Wride et al. Mol Vis 9:360-396, 2003; Setton-Avruj Exp Neurol 203:568-578, 2007; Ohyagi et al. Brain Res 635:323-327, 1994; Schelshorn et al. J Cereb Blood Flow Metab 29:585-595, 2009; Richter et al. J Comp Neurol 515:538-547, 2009) suggests that globins and/or derived peptidic fragments might play additional physiological functions in different tissues. In support of this hypothesis, a number of Hb-derived peptides have been identified and shown to have diverse functions (Ivanov et al. Biopoly 43:171-188, 1997; Karelin et al. Neurochem Res 24:1117-1124, 1999). Modern mass spectrometric analyses have helped in the identification of additional Hb peptides (Newton et al. J Biol Chem 281:5668-5676, 2006; Setton-Avruj Exp Neurol 203:568-578, 2007; Gomes et al. FASEB J 23:3020-3029, 2009); the molecular targets for these are only recently beginning to be revealed. Here, we review the status of the Hb peptide field and highlight recent reports on the identification of a molecular target for a novel set of Hb peptides, hemopressins, and the implication of these peptides to normal cell function and disease. The potential therapeutic applications for these Hb-derived hemopressin peptides will also be discussed.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gelman JS, Fricker LD. Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS JOURNAL 2010; 12:279-89. [PMID: 20383670 DOI: 10.1208/s12248-010-9186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Peptides perform many roles in cell-cell signaling; examples include neuropeptides, hormones, and growth factors. Although the vast majority of known neuropeptides are produced in the secretory pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1 cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules, they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either their synthesis or secretion should be regulated. If these criteria are met, we propose the name "non-classical neuropeptide" for this category of cytosolic bioactive peptide. This would be analogous to the non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released. We review some examples of cytosolic peptides from various protein precursors, describe potential mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to be considered non-classical neuropeptides.
Collapse
Affiliation(s)
- Julia S Gelman
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
11
|
Gomes MTR, Turchetti AP, Lopes MTP, Salas CE. Stimulation of fibroblast proliferation by the plant cysteine protease CMS2MS2 is independent of its proteolytic activity and requires ERK activation. Biol Chem 2010; 390:1285-91. [PMID: 19747075 DOI: 10.1515/bc.2009.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cysteine protease CMS2MS2 from Carica candamarcensis latex has been shown to enhance proliferation of L929 fibroblast and to activate the extracellular signal-regulated protein kinase (ERK). In experiments with CMS2MS2 irreversibly inhibited by E-64, the proliferative effect on fibroblasts remains unaffected. ERK phosphorylation mediated by CMS2MS2 was abolished in the presence of PD 98059 or U0126, both MAPK cascade inhibitors. In addition, these inhibitors suppress the mitogenic activity of intact CMS2MS2 or CMS2MS2-E-64. Furthermore, ERK phosphorylation and the mitogenic effect are partially suppressed by a phospholipase C (PLC) inhibitor. These data suggest that the mitogenic effect of CMS2MS2 on fibroblasts is independent of its proteolytic activity, requires ERK phosphorylation, and involves activation of PLC.
Collapse
Affiliation(s)
- Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil.
| | | | | | | |
Collapse
|
12
|
Pantaleo A, De Franceschi L, Ferru E, Vono R, Turrini F. Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells. J Proteomics 2009; 73:445-55. [PMID: 19758581 DOI: 10.1016/j.jprot.2009.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/17/2009] [Accepted: 08/27/2009] [Indexed: 12/20/2022]
Abstract
With the advent of proteomic techniques the number of known post-translational modifications (PTMs) affecting red cell membrane proteins is rapidly growing but the understanding of their role under physiological and pathological conditions is incompletely established. The wide range of hereditary diseases affecting different red cell membrane functions and the membrane modifications induced by malaria parasite intracellular growth represent a unique opportunity to study PTMs in response to variable cellular stresses. In the present review, some of the major areas of interest in red cell membrane research have been considered as modifications of erythrocyte deformability and maintenance of the surface area, membrane transport alterations, and removal of diseased and senescent red cells. In all mentioned research areas the functional roles of PTMs are prevalently restricted to the phosphorylative changes of the more abundant membrane proteins. The insufficient information about the PTMs occurring in a large majority of the red membrane proteins and the general lack of mass spectrometry data evidence the need of new comprehensive, proteomic approaches to improve the understanding of the red cell membrane physiology.
Collapse
Affiliation(s)
- Antonella Pantaleo
- Department of Genetics, Biology and Biochemistry, University of Turin, via Santena 5 bis, 10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
13
|
De Franceschi L, Biondani A, Carta F, Turrini F, Laudanna C, Deana R, Brunati AM, Turretta L, Iolascon A, Perrotta S, Elson A, Bulato C, Brugnara C. PTPepsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells. Proteomics 2008; 8:4695-708. [PMID: 18924107 PMCID: PMC3008556 DOI: 10.1002/pmic.200700596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Indexed: 12/31/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. Here, we report that red blood cells (RBCs) from mice lacking PTPepsilon (Ptpre(-/-)) exhibit (i) abnormal morphology; (ii) increased Ca(2+)-activated-K(+) channel activity, which was partially blocked by the Src family kinases (SFKs) inhibitor PP1; and (iii) market perturbation of the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating an alteration of RBC signal transduction pathways. Using the signaling network computational analysis of the Tyr-phosphoproteomic data, we identified seven topological clusters. We studied cluster 1 containing Fyn, SFK, and Syk another tyrosine kinase. In Ptpre(-/-)mouse RBCs, the activity of Fyn was increased while Syk kinase activity was decreased compared to wild-type RBCs, validating the network computational analysis, and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology.
Collapse
Affiliation(s)
- Lucia De Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shimizu M, Nakamura H, Hirabayashi T, Suganami A, Tamura Y, Murayama T. Ser515 phosphorylation-independent regulation of cytosolic phospholipase A2alpha (cPLA2alpha) by calmodulin-dependent protein kinase: possible interaction with catalytic domain A of cPLA2alpha. Cell Signal 2008; 20:815-24. [PMID: 18280113 DOI: 10.1016/j.cellsig.2007.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner.
Collapse
Affiliation(s)
- Masaya Shimizu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|