1
|
Lin I, Awamleh Z, Sinvhal M, Wan A, Bondhus L, Wei A, Russell BE, Weksberg R, Arboleda VA. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. BMC Med Genomics 2024; 17:282. [PMID: 39614348 DOI: 10.1186/s12920-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Rare variants in epigenes (a.k.a. chromatin modifiers), a class of genes that control epigenetic regulation, are commonly identified in both pediatric neurodevelopmental syndromes and as somatic variants in cancer. However, little is known about the extent of the shared disruption of signaling pathways by the same epigene across different diseases. To address this, we study an epigene, Additional Sex Combs-like 1 (ASXL1), where truncating heterozygous variants cause Bohring-Opitz syndrome (BOS, OMIM #605039), a germline neurodevelopmental disorder, while somatic variants are driver events in acute myeloid leukemia (AML). No BOS patients have been reported to have AML. METHODS This study explores common pathways dysregulated by ASXL1 variants in patients with BOS and AML. We analyzed whole blood transcriptomic and DNA methylation data from patients with BOS and AML with ASXL1-variant (AML-ASXL1) and examined differential exon usage and cell proportions. RESULTS Our analyses identified common molecular signatures between BOS and AML-ASXL1 and highlighted key biomarkers, including VANGL2, GRIK5 and GREM2, that are dysregulated across samples with ASXL1 variants, regardless of disease type. Notably, our data revealed significant de-repression of posterior homeobox A (HOXA) genes and upregulation of Wnt-signaling and hematopoietic regulator HOXB4. While we discovered many shared epigenetic and transcriptomic features, we also identified differential splice isoforms in RUNX3 where the long isoform, p46, is preferentially expressed in BOS, while the shorter p44 isoform is expressed in AML-ASXL1. CONCLUSION Our findings highlight the strong effects of ASXL1 variants that supersede cell-type and even disease states. This is the first direct comparison of transcriptomic and methylation profiles driven by pathogenic variants in a chromatin modifier gene in distinct diseases. Similar to RASopathies, in which pathogenic variants in many genes lead to overlapping phenotypes that can be treated by inhibiting a common pathway, our data identifies common pathways for ASXL1 variants that can be targeted for both disease states. Comparative approaches of high-penetrance genetic variants across cell types and disease states can identify targetable pathways to treat multiple diseases. Finally, our work highlights the connections of epigenes, such as ASXL1, to an underlying stem-cell state in both early development and in malignancy.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mili Sinvhal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew Wan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Leroy Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, Division of Clinical Genetics, UCLA, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental Bioinformatics Program, UCLA, Los Angeles, CA, USA.
- Molecular Biology institute, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Dybska E, Nowak JK, Walkowiak J. Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis. Biomedicines 2023; 11:1698. [PMID: 37371794 DOI: 10.3390/biomedicines11061698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The runt-related transcription factor 3 (RUNX3) regulates the differentiation of monocytes and their response to inflammation. However, the transcriptomic context of RUNX3 expression in blood monocytes remains poorly understood. We aim to learn about RUNX3 from its relationships within transcriptomes of bulk CD14+ cells in adults. This study used immunomagnetically sorted CD14+ cell gene expression microarray data from the Multi-Ethnic Study of Atherosclerosis (MESA, n = 1202, GSE56047) and the Correlated Expression and Disease Association Research (CEDAR, n = 281, E-MTAB-6667) cohorts. The data were preprocessed, subjected to RUNX3-focused correlation analyses and random forest modeling, followed by the gene ontology analysis. Immunity-focused differential ratio analysis with intermediary inference (DRAIMI) was used to integrate the data with protein-protein interaction network. Correlation analysis of RUNX3 expression revealed the strongest positive association for EVL (rmean = 0.75, pFDR-MESA = 5.37 × 10-140, pFDR-CEDAR = 5.52 × 10-80), ARHGAP17 (rmean = 0.74, pFDR-MESA = 1.13 × 10-169, pFDR-CEDAR = 9.20 × 10-59), DNMT1 (rmean = 0.74, pFDR-MESA = 1.10 × 10-169, pFDR-CEDAR = 1.67 × 10-58), and CLEC16A (rmean = 0.72, pFDR-MESA = 3.51 × 10-154, pFDR-CEDAR = 2.27 × 10-55), while the top negative correlates were C2ORF76 (rmean = -0.57, pFDR-MESA = 8.70 × 10-94, pFDR-CEDAR = 1.31 × 10-25) and TBC1D7 (rmean = -0.55, pFDR-MESA = 1.36 × 10-69, pFDR-CEDAR = 7.81 × 10-30). The RUNX3-associated transcriptome signature was involved in mRNA metabolism, signal transduction, and the organization of cytoskeleton, chromosomes, and chromatin, which may all accompany mitosis. Transcriptomic context of RUNX3 expression in monocytes hints at its relationship with cell growth, shape maintenance, and aspects of the immune response, including tyrosine kinases.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
3
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
4
|
Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, Ajore R, Ali M, Bentlage AEH, Elmér E, Eyjolfsson GI, Gudjonsson SA, Gullberg U, Gylfason A, Halldorsson BV, Hansson M, Holm H, Johansson Å, Johnsson E, Jonasdottir A, Ludviksson BR, Oddsson A, Olafsson I, Olafsson S, Sigurdardottir O, Sigurdsson A, Stefansdottir L, Masson G, Sulem P, Wuhrer M, Wihlborg AK, Thorleifsson G, Gudbjartsson DF, Thorsteinsdottir U, Vidarsson G, Jonsdottir I, Nilsson B, Stefansson K. Identification of sequence variants influencing immunoglobulin levels. Nat Genet 2017. [DOI: 10.1038/ng.3897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
6
|
Haider A, Steininger A, Ullmann R, Hummel M, Dimitrova L, Beyer M, Vandersee S, Lenze D, Sterry W, Assaf C, Möbs M. Inactivation of RUNX3/p46 Promotes Cutaneous T-Cell Lymphoma. J Invest Dermatol 2016; 136:2287-2296. [PMID: 27377697 DOI: 10.1016/j.jid.2016.05.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
The key role of RUNX3 in physiological T-cell differentiation has been extensively documented. However, information on its relevance for the development of human T-cell lymphomas or leukemias is scarce. Here, we show that alterations of RUNX3 by either heterozygous deletion or methylation of its distal promoter can be observed in the tumor cells of 15 of 21 (71%) patients suffering from Sézary syndrome, an aggressive variant of cutaneous T-cell lymphoma. As a consequence, mRNA levels of RUNX3/p46, the isoform controlled by the distal promoter, are significantly lower in Sézary syndrome tumor cells. Re-expression of RUNX3/p46 reduces cell viability and promotes apoptosis in a RUNX3/p46low cell line of cutaneous T-cell lymphoma. Based on this, we present evidence that RUNX3 can act as a tumor suppressor in a human T-cell malignancy and suggest that this effect is predominantly mediated through transcripts from its distal promoter, in particular RUNX3/p46.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, Munich, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Lora Dimitrova
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Marc Beyer
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Staffan Vandersee
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Central German Armed Forces hospital, Department of Dermatology and Allergy, Koblenz, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld, Germany.
| | - Markus Möbs
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet 2011; 20:4299-310. [PMID: 21835883 PMCID: PMC3196883 DOI: 10.1093/hmg/ddr356] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/08/2011] [Indexed: 12/31/2022] Open
Abstract
Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.
Collapse
Affiliation(s)
- Han Han
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Connie C. Cortez
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Xiaojing Yang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Peter W. Nichols
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter A. Jones
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| |
Collapse
|
8
|
Adoro S, McCaughtry T, Erman B, Alag A, Van Laethem F, Park JH, Tai X, Kimura M, Wang L, Grinberg A, Kubo M, Bosselut R, Love P, Singer A. Coreceptor gene imprinting governs thymocyte lineage fate. EMBO J 2011; 31:366-77. [PMID: 22036949 PMCID: PMC3261554 DOI: 10.1038/emboj.2011.388] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022] Open
Abstract
Double-positive (CD4+CD8+) thymocytes differentiate into CD4+ helper T cells and CD8+ cytotoxic T cells. A knock-in approach replacing CD8-coding sequences with CD4 cDNA shows that it is the expression kinetics of CD8, and not the identity of the coreceptor, that governs thymocyte-lineage fate. Immature thymocytes are bipotential cells that are signalled during positive selection to become either helper- or cytotoxic-lineage T cells. By tracking expression of lineage determining transcription factors during positive selection, we now report that the Cd8 coreceptor gene locus co-opts any coreceptor protein encoded within it to induce thymocytes to express the cytotoxic-lineage factor Runx3 and to adopt the cytotoxic-lineage fate, findings we refer to as ‘coreceptor gene imprinting'. Specifically, encoding CD4 proteins in the endogenous Cd8 gene locus caused major histocompatibility complex class II-specific thymocytes to express Runx3 during positive selection and to differentiate into CD4+ cytotoxic-lineage T cells. Our findings further indicate that coreceptor gene imprinting derives from the dynamic regulation of specific cis Cd8 gene enhancer elements by positive selection signals in the thymus. Thus, for coreceptor-dependent thymocytes, lineage fate is determined by Cd4 and Cd8 coreceptor gene loci and not by the specificity of T-cell antigen receptor/coreceptor signalling. This study identifies coreceptor gene imprinting as a critical determinant of lineage fate determination in the thymus.
Collapse
Affiliation(s)
- Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lim B, Ju H, Kim M, Kang C. Increased genetic susceptibility to intestinal-type gastric cancer is associated with increased activity of the RUNX3 distal promoter. Cancer 2011; 117:5161-71. [PMID: 21523770 DOI: 10.1002/cncr.26161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND The runt-related transcription factor RUNX3 plays essential roles in various types of tumors, including gastric cancer. Epigenetic changes in the methylation of the RUNX3 proximal promoter, but not common genetic changes in RUNX3, have been associated with both changes in the gene expression and development of the cancer. METHODS A case-control association study was conducted by genotyping 865 unrelated Korean subjects. Subsequent functional studies were performed to reveal functional implication of genetic association. RESULTS Several single-nucleotide polymorphisms (SNPs) in RUNX3 were significantly associated with susceptibility to intestinal-type gastric cancer (.0028 ≤ P ≤ .022) but not diffuse-type gastric cancer (.70 ≤ P ≤ .96). The risk-associated, minor variant of an intestinal-type gastric cancer-associated SNP in the RUNX3 distal promoter (rs7528484) significantly increased promoter activity in a CREB1-dependent manner. The distal promoter-derived, 33 kDa isoform of RUNX3 increased the activity of transcription factor nuclear factor kappa B (NF-κB), which had been activated by Helicobacter pylori infection, a risk factor for intestinal-type gastric cancer, and the expression of the interleukin-1β gene (IL1B), an NF-κB target genetically and functionally associated with gastric cancer. In contrast, the proximal promoter-derived, 44 kDa isoform of RUNX3 decreased both NF-κB activity and IL1B expression. CONCLUSIONS In addition to epigenetic changes in the RUNX3 proximal promoter, genetic changes in the distal promoter may be associated with susceptibility to intestinal-type gastric cancer by increasing promoter activity. Functionally, 2 RUNX3 isoforms may contribute differentially to intestinal-type gastric cancer susceptibility, at least in part through regulating NF-κB activity and IL1B expression.
Collapse
Affiliation(s)
- Byungho Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | |
Collapse
|
10
|
Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of transcription factors in T-cell differentiation and function: the role of Runx. Immunology 2010; 132:157-64. [PMID: 21091910 DOI: 10.1111/j.1365-2567.2010.03381.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past years, increasing numbers of distinct subsets have been discovered and identified for a T lymphocytes' entity. Differentiation and function of each T cell subset are controlled by a specific master transcription factor. Importantly, Runt-related transcription factors, particularly Runx1 and Runx3, interplay with these master regulators in various aspects of T cells' immunity. In this review article, we first explain roles of Th-Pok and Runx3 in differentiation of CD4 versus CD8 single positive cells, and later focus on cross-regulation of Th-Pok and Runx3 and their relationship with other factors such as TCR strength. Next, we provide evidences for the direct interplay of Runx1/3 with T-bet and GATA3 during Th1 versus Th2 commitment to activate or silence transcription of signature cytokine genes, IFNγ and IL4. Lastly, we explain feed-forward relationship between Runx1 and Foxp3 and discuss roles of Runx1 in regulatory T cells' suppressive activity. This review highlights an essential importance of Runx molecules in controlling various T cell subsets' differentiation and functions through molecular interplay with the master transcription factors in terms of protein-protein interaction as well as regulation of gene expression.
Collapse
Affiliation(s)
- Won Fen Wong
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Isehara, Japan
| | | | | | | | | |
Collapse
|
11
|
Cao Y, Li H, Sun Y, Chen X, Liu H, Gao X, Liu X. Interferon regulatory factor 4 regulates thymocyte differentiation by repressing Runx3 expression. Eur J Immunol 2010; 40:3198-209. [DOI: 10.1002/eji.201040570] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
|
12
|
Wong WF, Nakazato M, Watanabe T, Kohu K, Ogata T, Yoshida N, Sotomaru Y, Ito M, Araki K, Telfer J, Fukumoto M, Suzuki D, Sato T, Hozumi K, Habu S, Satake M. Over-expression of Runx1 transcription factor impairs the development of thymocytes from the double-negative to double-positive stages. Immunology 2010; 130:243-53. [PMID: 20102410 DOI: 10.1111/j.1365-2567.2009.03230.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Runx1 transcription factor is highly expressed at a CD4/CD8-double-negative (DN) stage of thymocyte development but is down-regulated when cells proceed to the double-positive (DP) stage. In the present study, we examined whether the down-regulation of Runx1 is necessary for thymocyte differentiation from the DN to DP stage. When Runx1 was artificially over-expressed in thymocytes by Lck-driven Cre, the DN3 population was unaffected, as exemplified by proper pre-T-cell receptor expression, whereas the DN4 population was perturbed as shown by the decrease in the CD27(hi) sub-fraction. In parallel, the growth rate of DN4 cells was reduced by half, as measured by bromodeoxyuridine incorporation. These events impaired the transition of DN4 cells to the DP stage, resulting in the drastic reduction of the number of DP thymocytes. The Runx1 gene has two promoters, a proximal and a distal promoter; and, in thymocytes, endogenous Runx1 was mainly transcribed from the distal promoter. Interestingly, only distal, but not proximal, Runx1 over-expression exhibited an inhibitory effect on thymocyte differentiation, suggesting that the distal Runx1 protein may fulfil a unique function. Our collective results indicate that production of the distal Runx1 protein must be adequately down-regulated for thymocytes to transit from the DN to the DP stage, a critical step in the massive expansion of the T-cell lineage.
Collapse
Affiliation(s)
- Won F Wong
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|