1
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Tong M, Ziplow JL, Mark P, de la Monte SM. Dietary Soy Prevents Alcohol-Mediated Neurocognitive Dysfunction and Associated Impairments in Brain Insulin Pathway Signaling in an Adolescent Rat Model. Biomolecules 2022; 12:676. [PMID: 35625605 PMCID: PMC9139005 DOI: 10.3390/biom12050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol-related brain degeneration is linked to cognitive-motor deficits and impaired signaling through insulin/insulin-like growth factor type 1 (IGF-1)-Akt pathways that regulate cell survival, plasticity, metabolism, and homeostasis. In addition, ethanol inhibits Aspartyl-asparaginyl-β-hydroxylase (ASPH), a downstream target of insulin/IGF-1-Akt signaling and an activator of Notch networks. Previous studies have suggested that early treatment with insulin sensitizers or dietary soy could reduce or prevent the long-term adverse effects of chronic ethanol feeding. OBJECTIVE The goal of this study was to assess the effects of substituting soy isolate for casein to prevent or reduce ethanol's adverse effects on brain structure and function. METHODS Young adolescent male and female Long Evans were used in a 4-way model as follows: Control + Casein; Ethanol + Casein; Control + Soy; Ethanol + Soy; Control = 0% ethanol; Ethanol = 26% ethanol (caloric). Rats were fed isocaloric diets from 4 to 11 weeks of age. During the final experimental week, the Morris Water maze test was used to assess spatial learning (4 consecutive days), after which the brains were harvested to measure the temporal lobe expression of the total phospho-Akt pathway and downstream target proteins using multiplex bead-based enzyme-linked immunosorbent assays (ELISAs) and duplex ELISAs. RESULTS Ethanol inhibited spatial learning and reduced brain weight, insulin signaling through Akt, and the expression of ASPH when standard casein was provided as the protein source. The substitution of soy isolate for casein largely abrogated the adverse effects of chronic ethanol feeding. In contrast, Notch signaling protein expression was minimally altered by ethanol or soy isolate. CONCLUSIONS These novel findings suggest that the insulin sensitizer properties of soy isolate may prevent some of the adverse effects that chronic ethanol exposure has on neurobehavioral function and insulin-regulated metabolic pathways in adolescent brains.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Jason L. Ziplow
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Princess Mark
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology, Departments of Medicine, Neurology and Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI 02808, USA
- Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence VA Medical Center, Providence, RI 02808, USA
| |
Collapse
|
3
|
Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate β-hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res 2020; 39:163. [PMID: 32811566 PMCID: PMC7433162 DOI: 10.1186/s13046-020-01669-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
As metastasis is a major cause of death in cancer patients, new anti-metastatic strategies are needed to improve cancer therapy outcomes. Numerous pathways have been shown to contribute to migration and invasion of malignant tumors. Aspartate β-hydroxylase (ASPH) is a key player in the malignant transformation of solid tumors by enhancing cell proliferation, migration, and invasion. ASPH also promotes tumor growth by stimulation of angiogenesis and immunosuppression. These effects are mainly achieved via the activation of Notch and SRC signaling pathways. ASPH expression is upregulated by growth factors and hypoxia in different human tumors and its inactivation may have broad clinical impact. Therefore, small molecule inhibitors of ASPH enzymatic activity have been developed and their anti-metastatic effect confirmed in preclinical mouse models. ASPH can also be targeted by monoclonal antibodies and has also been used as a tumor-associated antigen to induce both cluster of differentiation (CD) 8+ and CD4+ T cells in mice. The PAN-301-1 vaccine against ASPH has already been tested in a phase 1 clinical trial in patients with prostate cancer. In summary, ASPH is a promising target for anti-tumor and anti-metastatic therapy based on inactivation of catalytic activity and/or immunotherapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
- Crenae Therapeutics, Phoenix, AZ, USA
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
4
|
Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, Wan X, Li J, Jiao B, Liu J, Huang A, Wu D, Xiang H, Pawlik TM, Wang H, Lau WY, Wang Y, Shen F. Hydroxylase Activity of ASPH Promotes Hepatocellular Carcinoma Metastasis Through Epithelial-to-Mesenchymal Transition Pathway. EBioMedicine 2018; 31:287-298. [PMID: 29764768 PMCID: PMC6013968 DOI: 10.1016/j.ebiom.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Abstract
Over-expression of aspartyl (asparagynal)-β-hydroxylase (ASPH) contributes to hepatocellular carcinoma (HCC) invasiveness, but the role of ASPH hydroxylase activity in this process remains to be defined. As such, the current study investigated the role of ASPH hydroxylase activity in downstream signalling of HCC tumorgenesis and, specifically, metastasis development. Over-expression of wild-type ASPH, but not a hydroxylase mutant, promoted HCC cell migration in vitro, as well as intrahepatic and distant metastases in vivo. The enhanced migration and epithelial to mesenchymal transition (EMT) activation was notably absent in response to hydroxylase activity blockade. Vimentin, a regulator of EMT, interacted with ASPH and likely mediated the effect of ASPH hydroxylase activity with cell migration. The enhanced hydroxylase activity in tumor tissues predicted worse prognoses of HCC patients. Collectively, the hydroxylase activity of ASPH affected HCC metastasis through interacting with vimentin and regulating EMT. As such, ASPH might be a promising therapeutic target of HCC. Over-expression of ASPH promoted HCC intrahepatic and distant metastases in vivo. ASPH interacts with vimentin to promote HCC cell migration. Enhanced hydroxylase activity in tumor predicted worse prognoses of HCC patients.
Hepatocellular carcinoma has aggressive invasiveness and high metastatic rate. The reason for metastasis is largely unknown and the effective treatment is still lacking. Although over-expression of ASPH has been demonstrated to enhance hepatocellular carcinoma invasiveness, whether its hydroxylase activity is necessary remains uncharacterized. Here, we found the hydroxylase activity was critical to promote hepatocellular carcinoma invasiveness in vitro and metastasis in vivo, and associated with post-surgery survival. ASPH hydroxylase activity play an important role in epithelial-to-mesenchymal transition through interacting with vimentin. Our findings imply that ASPH antagonists might be promising in developing novel therapy.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying Hou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Haibo Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianglei Xing
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuying Wan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Jingfeng Liu
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Aimin Huang
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongjun Xiang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Hongyang Wang
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Wan Yee Lau
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China.
| | - Feng Shen
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
5
|
Tong M, Gonzalez-Navarrete H, Kirchberg T, Gotama B, Yalcin EB, Kay J, de la Monte SM. Ethanol-Induced White Matter Atrophy Is Associated with Impaired Expression of Aspartyl-Asparaginyl- β-Hydroxylase (ASPH) and Notch Signaling in an Experimental Rat Model. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236033. [PMID: 29204305 PMCID: PMC5711436 DOI: 10.4303/jdar/236033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcohol-induced white matter (WM) degeneration is linked to cognitive-motor deficits and impairs insulin/insulin-like growth factor (IGF) and Notch networks regulating oligodendrocyte function. Ethanol downregulates Aspartyl-Asparaginyl-β-Hydroxylase (ASPH) which drives Notch. These experiments determined if alcohol-related WM degeneration was linked to inhibition of ASPH and Notch. Adult Long Evans rats were fed for 3, 6 or 8 weeks with liquid diets containing 26% ethanol (caloric) and in the last two weeks prior to each endpoint they were binged with 2 g/kg ethanol, 3×/week. Controls were studied in parallel. Histological sections of the frontal lobe and cerebellar vermis were used for image analysis. Frontal WM proteins were used for Western blotting and duplex ELISAs. The ethanol exposures caused progressive reductions in frontal and cerebellar WM. Ethanol-mediated frontal WM atrophy was associated with reduced expression of ASPH, Jagged 1, HES-1, and HIF-1α. These findings link ethanol-induced WM atrophy to inhibition of ASPH expression and signaling through Notch networks, including HIF-1α.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | - Billy Gotama
- Molecular Pharmacology and Biotechnology Graduate Program, Brown University, Providence, RI 02912, USA
- Brown University, Providence, RI 02912, USA
| | - Emine B. Yalcin
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jared Kay
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
6
|
Tong M, Gao JS, Borgas D, de la Monte SM. Phosphorylation Modulates Aspartyl-(Asparaginyl)-β Hydroxylase Protein Expression, Catalytic Activity and Migration in Human Immature Neuronal Cerebellar Cells. ACTA ACUST UNITED AC 2017; 6. [PMID: 29607347 DOI: 10.4172/2324-9293.1000133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Abundant aspartyl-asparaginyl-β-hydroxylase (ASPH) expression supports robust neuronal migration during development, and reduced ASPH expression and function, as occur in fetal alcohol spectrum disorder, impair cerebellar neuron migration. ASPH mediates its effects on cell migration via hydroxylation-dependent activation of Notch signaling networks. Insulin and Insulin-like growth factor (IGF-1) stimulate ASPH mRNA transcription and enhance ASPH protein expression by inhibiting Glycogen Synthase Kinase-3β (GSK-3β). This study examines the role of direct GSK-3β phosphorylation as a modulator of ASPH protein expression and function in human cerebellar-derived PNET2 cells. Methods Predicted phosphorylation sites encoded by human ASPH were ablated by S/T→A site-directed mutagenesis of an N-Myc-tagged wildtype (WT) cDNA regulated by a CMV promoter. Phenotypic and functional features were assessed in transiently transfected PNET2 cells. Results Cells transfected with WT ASPH had increased ASPH protein expression, directional motility, Notch-1 and Jagged-1 expression, and catalytic activity relative to control. Although most single- and multi-point ASPH mutants also had increased ASPH protein expression, their effects on Notch and Jagged expression, directional motility and adhesion, and catalytic activity varied such that only a few of the cDNA constructs conferred functional advantages over WT. Immunofluorescence studies showed that ASPH phosphorylation site deletions can alter the subcellular distribution of ASPH and therefore its potential interactions with Notch/Jagged at the cell surface. Conclusions Inhibition of ASPH phosphorylation enhances ASPH protein expression, but attendant alterations in intra-cellular trafficking may govern the functional consequences in relation to neuronal migration, adhesion and Notch activated signaling.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, and Departments of Medicine, Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI and the Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| | - Jin-Song Gao
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, and Departments of Medicine, Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI and the Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| | - Diana Borgas
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, and Departments of Medicine, Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI and the Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| | - Suzanne M de la Monte
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, and Departments of Medicine, Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI and the Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Zabala V, Silbermann E, Re E, Andreani T, Tong M, Ramirez T, Gundogan F, de la Monte SM. Potential Co-Factor Role of Tobacco Specific Nitrosamine Exposures in the Pathogenesis of Fetal Alcohol Spectrum Disorder. GYNECOLOGY AND OBSTETRICS RESEARCH : OPEN JOURNAL 2016; 2:112-125. [PMID: 28845454 PMCID: PMC5570438 DOI: 10.17140/goroj-2-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cerebellar developmental abnormalities in Fetal Alcohol Spectrum Disorder (FASD) are linked to impairments in insulin signaling. However, co-morbid alcohol and tobacco abuses during pregnancy are common. Since smoking leads to tobacco specific Nitrosamine (NNK) exposures which have been shown to cause brain insulin resistance, we hypothesized that neurodevelopmental abnormalities in FASD could be mediated by ethanol and/or NNK. METHODS Long Evans rat pups were intraperitoneal (IP) administered ethanol (2 g/kg) on postnatal days (P) 2, 4, 6 and/or NNK (2 mg/kg) on P3, P5, and P7 to simulate third trimester human exposures. The Cerebellar function, histology, insulin and Insulin-like Growth Factor (IGF) signaling, and neuroglial protein expression were assessed. RESULTS Ethanol, NNK and ethanol+NNK groups had significant impairments in motor function (rotarod tests), abnormalities in cerebellar structure (Purkinje cell loss, simplification and irregularity of folia, and altered white matter), signaling through the insulin and IGF-1 receptors, IRS-1, Akt and GSK-3β, and reduced expression of several important neuroglial proteins. Despite similar functional effects, the mechanisms and severity of NNK and ethanol+NNK induced alterations in cerebellar protein expression differed from those of ethanol. CONCLUSIONS Ethanol and NNK exert independent but overlapping adverse effects on cerebellar development, function, insulin signaling through cell survival, plasticity, metabolic pathways, and neuroglial protein expression. The results support the hypothesis that tobacco smoke exposure can serve as a co-factor mediating long-term effects on brain structure and function in FASD.
Collapse
Affiliation(s)
- Valerie Zabala
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| | | | - Edward Re
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Tomas Andreani
- Graduate Program in Neuroscience, Northwestern University, Chicago, IL, USA
| | - Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Fusun Gundogan
- Department of Pathology, Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Finotti A, Bianchi N, Fabbri E, Borgatti M, Breveglieri G, Gasparello J, Gambari R. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacol Res 2014; 91:57-68. [PMID: 25478892 PMCID: PMC4309890 DOI: 10.1016/j.phrs.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G + C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| |
Collapse
|
9
|
Lizarazo D, Zabala V, Tong M, Longato L, de la Monte SM. Ceramide inhibitor myriocin restores insulin/insulin growth factor signaling for liver remodeling in experimental alcohol-related steatohepatitis. J Gastroenterol Hepatol 2013; 28:1660-8. [PMID: 23802886 PMCID: PMC4551508 DOI: 10.1111/jgh.12291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Alcohol-related liver disease (ALD) is mediated in part by insulin resistance. Attendant dysregulation of lipid metabolism increases accumulation of hepatic ceramides that worsen insulin resistance and compromise the structural and functional integrity of the liver. Insulin and insulin growth factor (IGF) stimulate aspartyl-asparaginyl-β-hydroxylase (AAH), which promotes cell motility needed for structural maintenance and remodeling of the liver. AAH mediates its effects by activating Notch, and in ALD, insulin/IGF signaling, AAH, and Notch are inhibited. METHOD To test the hypothesis that in ALD, hepatic ceramide load contributes to impairments in insulin, AAH, and Notch signaling, control and chronic ethanol-fed adult Long-Evans rats were treated with myriocin, an inhibitor of serine palmitoyl transferase. Livers were used to assess steatohepatitis, insulin/IGF pathway activation, and expression of AAH-Notch signaling molecules. RESULTS Chronic ethanol-fed rats had steatohepatitis with increased ceramide levels; impairments in signaling through the insulin receptor, insulin receptor substrate, and Akt; and decreased expression of AAH, Notch, Jagged, Hairy-Enhancer of Split-1, hypoxia-inducible factor 1α, and proliferating cell nuclear antigen. Myriocin abrogated many of these adverse effects of ethanol, particularly hepatic ceramide accumulation, steatohepatitis, and impairments of insulin signaling through Akt, AAH, and Notch. CONCLUSIONS In ALD, the histopathology and impairments in insulin/IGF responsiveness can be substantially resolved by ceramide inhibitor treatments, even in the context of continued chronic ethanol exposure.
Collapse
Affiliation(s)
- Diana Lizarazo
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Valerie Zabala
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lisa Longato
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Divisions of Gastroenterology and Neuropathology and Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Treves S, Vukcevic M, Maj M, Thurnheer R, Mosca B, Zorzato F. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J Physiol 2009; 587:3071-9. [PMID: 19403606 DOI: 10.1113/jphysiol.2009.171876] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca(2+) stored in the sarcoplasmic reticulum by a process called excitation-contraction coupling. Excitation-contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation-contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca(2+) release channel, and Ca(2+) storage protein, respectively. Nevertheless, a number of additional proteins have been shown to be essential both for the structural formation of the machinery involved in excitation-contraction coupling and for its fine tuning. In this review we discuss the functional role of minor sarcoplasmic reticulum protein components. The definition of their roles in excitation-contraction coupling is important in order to understand how mutations in genes involved in Ca(2+) signalling cause neuromuscular disorders.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Pritchard TJ, Kranias EG. Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesis. J Physiol 2009; 587:3125-33. [PMID: 19403607 DOI: 10.1113/jphysiol.2009.172171] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Contractile dysfunction and ventricular arrhythmias associated with heart failure have been attributed to aberrant sarcoplasmic reticulum (SR) Ca(2+) cycling. The study of junctin (JCN) and histidine-rich Ca(2+) binding protein (HRC) becomes of particular importance since these proteins have been shown to be critical regulators of Ca(2+) cycling. Specifically, JCN is a SR membrane protein, which is part of the SR Ca(2+) release quaternary structure that also includes the ryanodine receptor, triadin and calsequestrin. Functionally, JCN serves as a bridge between calsequestrin and the Ca(2+) release channel, ryanodine receptor. HRC is a SR luminal Ca(2+) binding protein known to associate with both triadin and the sarcoplasmic reticulum Ca(2+)-ATPase, and may thus mediate the crosstalk between SR Ca(2+) uptake and release. Indeed, evidence from genetic models of JCN and HRC indicate that they are important in cardiophysiology as alterations in these proteins affect SR Ca(2+) handling and cardiac function. In addition, downregulation of JCN and HRC may contribute to Ca(2+) cycling perturbations manifest in the failing heart, where their protein levels are significantly reduced. This review examines the roles of JCN and HRC in SR Ca(2+) cycling and their potential significance in heart failure.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH 45267-0575, USA
| | | |
Collapse
|
12
|
Finotti A, Treves S, Zorzato F, Gambari R, Feriotto G. Upstream stimulatory factors are involved in the P1 promoter directed transcription of the A beta H-J-J locus. BMC Mol Biol 2008; 9:110. [PMID: 19087304 PMCID: PMC2625362 DOI: 10.1186/1471-2199-9-110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative splicing of the locus A beta H-J-J generates functionally distinct proteins: the enzyme aspartyl (asparaginyl) beta-hydroxylase (AAH), truncated homologs of AAH with a role in calcium homeostasis humbug and junctate and a structural protein of the sarcoplasmic reticulum membranes junctin. AAH and humbug are over expressed in a broad range of malignant neoplasms. We have previously reported that this locus contains two promoters, P1 and P2. While AAH and humbug are expressed in most tissues under the regulation of the P1 promoter, AAH, junctin and junctate are predominantly expressed in excitable tissues under the control of the P2 promoter. We previously demonstrated that Sp transcription factors positively regulate the P1 promoter. RESULTS In the present study, we extended the functional characterization of the P1 promoter of the A beta H-J-J locus. We demonstrated by quantitative Real-time RT-PCR that mRNAs from the P1 promoter are actively transcribed in all the human cell lines analysed. To investigate the transcription mechanism we transiently transfected HeLa cells with sequentially deleted reporter constructs containing different regions of the -661/+81 P1 nucleotide sequence. Our results showed that (i) this promoter fragment is a powerful activator of the reporter gene in HeLa cell line, (ii) the region spanning 512 bp upstream of the transcription start site exhibits maximal level of transcriptional activity, (iii) progressive deletions from -512 gradually reduce reporter expression. The region responsible for maximal transcription contains an E-box site; we characterized the molecular interactions between USF1/2 with this E-box element by electrophoretic mobility shift assay and supershift analysis. In addition, our USF1 and USF2 chromatin immunoprecipitation results demonstrate that these transcription factors bind the P1 promoter in vivo. A functional role of USF1/USF2 in upregulating P1-directed transcription was demonstrated by analysis of the effects of (i) in vitro mutagenesis of the P1/E-box binding site, (ii) RNA interference targeting USF1 transcripts. CONCLUSION Our results suggest that USF factors positively regulate the core of P1 promoter, and, together with our previously data, we can conclude that both Sp and USF DNA interaction and transcription activity are involved in the P1 promoter dependent expression of AAH and humbug.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Biochemistry and Molecular Biology, Molecular Biology Section, University of Ferrara, Via Fossato di Mortara 74, 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
13
|
Accetta A, Corradini R, Sforza S, Tedeschi T, Brognara E, Borgatti M, Gambari R, Marchelli R. New Uracil Dimers Showing Erythroid Differentiation Inducing Activities. J Med Chem 2008; 52:87-94. [DOI: 10.1021/jm800982q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Accetta
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Roberto Corradini
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Stefano Sforza
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Tullia Tedeschi
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Eleonora Brognara
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Monica Borgatti
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Roberto Gambari
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| | - Rosangela Marchelli
- Dipartimento di Chimica Organica ed Industriale, Università degli Studi di Parma, Viale G.P. Usberti, 17/A, 43100 Parma, Italy, and BioPhamaNet, Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46- 44100 Ferrara, Italy
| |
Collapse
|