1
|
CD95 Signaling Inhibits B Cell Receptor-Mediated Gammaherpesvirus Replication in Apoptosis-Resistant B Lymphoma Cells. J Virol 2016; 90:9782-9796. [PMID: 27558422 DOI: 10.1128/jvi.00668-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
While CD95 is an apoptosis-inducing receptor and has emerged as a potential anticancer therapy target, mounting evidence shows that CD95 is also emerging as a tumor promoter by activating nonapoptotic signaling pathways. Gammaherpesviral infection is closely associated with lymphoproliferative diseases, including B cell lymphomas. The nonapoptotic function of CD95 in gammaherpesvirus-associated lymphomas is largely unknown. Here, we show that stimulation of CD95 agonist antibody drives the majority of sensitive gammaherpesvirus-transformed B cells to undergo caspase-dependent apoptosis and promotes the survival and proliferation of a subpopulation of apoptosis-resistant B cells. Surprisingly, CD95-mediated nonapoptotic signaling induced beta interferon (IFN-β) expression and correlatively inhibited B cell receptor (BCR)-mediated gammaherpesviral replication in the apoptosis-resistant lymphoma cells without influencing BCR signaling. Further analysis showed that IFN-β alone or synergizing with CD95 blocked the activation of lytic switch proteins and the gene expression of gammaherpesviruses. Our findings indicate that, independent of its apoptotic activity, CD95 signaling activity plays an important role in blocking viral replication in apoptosis-resistant, gammaherpesvirus-associated B lymphoma cells, suggesting a novel mechanism that indicates how host CD95 prototype death receptor controls the life cycle of gammaherpesviruses independent of its apoptotic activity. IMPORTANCE Gammaherpesviruses are closely associated with lymphoid malignancies and other cancers. Viral replication and persistence strategies leading to cancer involve the activation of antiapoptotic and proliferation programs, as well as evasion of the host immune response. Here, we provide evidence that the stimulation of CD95 agonist antibody, mimicking one of the major mechanisms of cytotoxic T cell killing, inhibits B cell receptor-mediated gammaherpesviral replication in CD95 apoptosis-resistant lymphoma cells. CD95-induced type I interferon (IFN-β) contributes to the inhibition of gammaherpesviral replication. This finding sheds new light on the CD95 nonapoptotic function and provides a novel mechanism for gammaherpesviruses that helps them to escape host immune surveillance.
Collapse
|
2
|
Villa-Morales M, Cobos MA, González-Gugel E, Álvarez-Iglesias V, Martínez B, Piris MA, Carracedo A, Benítez J, Fernández-Piqueras J. FAS system deregulation in T-cell lymphoblastic lymphoma. Cell Death Dis 2014; 5:e1110. [PMID: 24603338 PMCID: PMC3973220 DOI: 10.1038/cddis.2014.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 02/04/2014] [Indexed: 11/09/2022]
Abstract
The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations.
Collapse
Affiliation(s)
- M Villa-Morales
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| | - M A Cobos
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| | - E González-Gugel
- Musculoskeletal Research Center, NYU Hospital for Joint Diseases, New York, NY, USA
| | - V Álvarez-Iglesias
- Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - B Martínez
- 1] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [2] Instituto de Investigación de Enfermedades Raras, ISCIII, Madrid, Spain
| | - M A Piris
- Hospital Universitario Marqués de Valdecilla, Fundación IFIMAV, Santander, Spain
| | - A Carracedo
- 1] Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - J Benítez
- 1] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [2] Human Genetics Group, CNIO, Madrid, Spain
| | - J Fernández-Piqueras
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Liu WH, Chang LS. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway. Toxicol Lett 2009; 191:140-8. [DOI: 10.1016/j.toxlet.2009.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 12/19/2022]
|