1
|
Aitchison EE, Dimesa AM, Shoari A. Matrix Metalloproteinases in Glioma: Drivers of Invasion and Therapeutic Targets. BIOTECH 2025; 14:28. [PMID: 40265458 PMCID: PMC12015896 DOI: 10.3390/biotech14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a complex interplay involving tumor proliferation, angiogenesis, and immune modulation, thereby influencing tumor progression and patient prognosis. This review provides a comprehensive analysis of the roles of various MMPs in different types of gliomas, from highly malignant gliomas to metastatic lesions. Emphasis is placed on how the dysregulation of MMPs impacts tumor behavior, the association between specific MMPs and the tumor grade, and their potential as biomarkers for diagnosis and prognosis. Additionally, the current therapeutic approaches targeting MMP activity are discussed, exploring both their challenges and future potential. By synthesizing recent findings, this paper aims to clarify the broad significance of MMPs in gliomas and propose avenues for translational research that could enhance treatment strategies and clinical outcomes.
Collapse
Affiliation(s)
- Ella E. Aitchison
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alexandra M. Dimesa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
| |
Collapse
|
2
|
Wang WG, Jiang XF, Zhang C, Zhan XP, Cheng JG, Tao LM, Xu WP, Li Z, Zhang Y. Avermectin induced vascular damage in zebrafish larvae: association with mitochondria-mediated apoptosis and VEGF/Notch signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135376. [PMID: 39111175 DOI: 10.1016/j.jhazmat.2024.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Feng Jiang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension Center, Shanghai 201103, China
| | - Jia-Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 PMCID: PMC11409989 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Bevacizumab in real-life patients with recurrent glioblastoma: benefit or futility? J Neurol 2023; 270:2702-2714. [PMID: 36813928 DOI: 10.1007/s00415-023-11600-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Angiogenesis plays a key role in glioblastoma, but most anti-angiogenic therapy trials have failed to change the poor outcome of this disease. Despite this, and because bevacizumab is known to alleviate symptoms, it is used in daily practice. We aimed to assess the real-life benefit in terms of overall survival, time to treatment failure, objective response, and clinical benefit in patients with recurrent glioblastoma treated with bevacizumab. METHODS This was a monocentric, retrospective study including patients treated between 2006 and 2016 in our institution. RESULTS 202 patients were included. The median duration of bevacizumab treatment was 6 months. Median time to treatment failure was 6.8 months (95%CI 5.3-8.2) and median overall survival was 23.7 months (95%CI 20.6-26.8). Fifty percent of patients had a radiological response at first MRI evaluation, and 56% experienced symptom amelioration. Grade 1/2 hypertension (n = 34, 17%) and grade one proteinuria (n = 20, 10%) were the most common side effects. CONCLUSIONS This study reports a clinical benefit and an acceptable toxicity profile in patients with recurrent glioblastoma treated with bevacizumab. As the panel of therapies is still very limited for these tumors, this work supports the use of bevacizumab as a therapeutic option.
Collapse
|
5
|
Minaei SE, Khoei S, Khoee S, Mahdavi SR. Sensitization of glioblastoma cancer cells to radiotherapy and magnetic hyperthermia by targeted temozolomide-loaded magnetite tri-block copolymer nanoparticles as a nanotheranostic agent. Life Sci 2022; 306:120729. [PMID: 35753439 DOI: 10.1016/j.lfs.2022.120729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
AIMS Recently, the development of new strategies in the treatment and diagnosis of cancer cells such as thermo-radiation-sensitizer and theranostic agents have received a great deal of attention. In this work, folic acid-conjugated temozolomide-loaded SPION@PEG-PBA-PEG nanoparticles (TMZ-MNP-FA NPs) were proposed for use as magnetic resonance imaging (MRI) contrast agents and to enhance the cytotoxic effects of hyperthermia and radiotherapy. MAIN METHODS Nanoparticles were synthesized by the Nano-precipitation method and their characteristics were determined by dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). To evaluate the thermo-radio-sensitization effects of NPs, C6 cells were treated with nanoparticles for 24 h and then exposed to 6-MV X-ray radiation. After radiotherapy, the cells were subjected to an alternating magnetic field (AMF) hyperthermia. The therapeutic potential was assessed using clonogenic assay, ROS generation measurement, flow cytometry assay, and qRT-PCR analysis. Also, the diagnostic properties of the nanoparticles were assessed by MRI. KEY FINDINGS MRI scanning indicated that nanoparticles accumulated in C6 cells could be tracked by T2-weighted MR imaging. Colony formation assay proved that TMZ-MNP-FA NPs enhanced the anti-proliferation effects of AMF by 1.94-fold compared to AMF alone (P < 0.0001). Moreover, these NPs improved the radiation effects with a dose enhancement factor of 1.65. All results showed that the combination of carrier-based chemotherapy with hyperthermia and radiotherapy caused a higher anticancer efficacy than single- or two-modality treatments. SIGNIFICANCE The nanoparticles advanced in this study can be proposed as the promising theranostic and thermo-radio-sensitizer platform for the diagnosis and tri-modal synergistic cancer therapy.
Collapse
Affiliation(s)
- Soraya Emamgholizadeh Minaei
- Department of Medical Physics and Imaging, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
Simulating the behaviour of glioblastoma multiforme based on patient MRI during treatments. J Math Biol 2022; 84:44. [PMID: 35482133 DOI: 10.1007/s00285-022-01747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Glioblastoma multiforme is a brain cancer that still shows poor prognosis for patients despite the active research for new treatments. In this work, the goal is to model and simulate the evolution of tumour associated angiogenesis and the therapeutic response to glioblastoma multiforme. Multiple phenomena are modelled in order to fit different biological pathways, such as the cellular cycle, apoptosis, hypoxia or angiogenesis. This leads to a nonlinear system with 4 equations and 4 unknowns: the density of tumour cells, the [Formula: see text] concentration, the density of endothelial cells and the vascular endothelial growth factor concentration. This system is solved numerically on a mesh fitting the geometry of the brain and the tumour of a patient based on a 2D slice of MRI. We show that our numerical scheme is positive, and we give the energy estimates on the discrete solution to ensure its existence. The numerical scheme uses nonlinear control volume finite elements in space and is implicit in time. Numerical simulations have been done using the different standard treatments: surgery, chemotherapy and radiotherapy, in order to conform to the behaviour of a tumour in response to treatments according to empirical clinical knowledge. We find that our theoretical model exhibits realistic behaviours.
Collapse
|
8
|
Eldesouki S, Samara KA, Qadri R, Obaideen AA, Otour AH, Habbal O, Bm Ahmed S. XIST in Brain Cancer. Clin Chim Acta 2022; 531:283-290. [PMID: 35483442 DOI: 10.1016/j.cca.2022.04.993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) make up the majority of the human genome. They are a group of small RNA molecules that do not code for any proteins but play a primary role in regulating a variety of physiological and pathological processes. X-inactive specific transcript (XIST), one of the first lncRNAs to be discovered, is chiefly responsible for X chromosome inactivation: an evolutionary process of dosage compensation between the sex chromosomes of males and females. Recent studies show that XIST plays a pathophysiological role in the development and prognosis of brain tumors, a heterogeneous group of neoplasms that cause significant morbidity and mortality. In this review, we explore recent advancements in the role of XIST in migration, proliferation, angiogenesis, chemoresistance, and evasion of apoptosis in different types of brain tumors, with particular emphasis on gliomas.
Collapse
Affiliation(s)
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah, UAE
| | | | - Ahmad H Otour
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Omar Habbal
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Samrein Bm Ahmed
- College of Medicine, University of Sharjah, Sharjah, UAE; College of Health and Wellbeing and Life sciences, Department of Biosciences and chemistry, Sheffield Hallam University, UK
| |
Collapse
|
9
|
Evaluation of Anti-angiogenic Agent F16 for Targeting Glioblastoma Xenograft Tumors. Cancer Genet 2022; 264-265:71-89. [DOI: 10.1016/j.cancergen.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
10
|
Yamada S, Muto J, Iba S, Shiogama K, Tsuyuki Y, Satou A, Ohba S, Murayama K, Sugita Y, Nakamura S, Yokoo H, Tomita A, Hirose Y, Tsukamoto T, Abe M. Primary central nervous system lymphomas with massive intratumoral hemorrhage: Clinical, radiological, pathological, and molecular features of six cases. Neuropathology 2021; 41:335-348. [PMID: 34254378 DOI: 10.1111/neup.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Primary central nervous system lymphomas (PCNSLs) rarely exhibit intratumoral hemorrhage. The differential diagnosis of hemorrhagic neoplasms of the central nervous system (CNS) currently includes metastatic carcinomas, melanomas, choriocarcinomas, oligodendrogliomas, and glioblastomas. Here we present the clinical, radiological, pathological, and molecular genetic features of six cases of PCNSL associated with intratumoral hemorrhage. The median age of patients was 75 years, with male predominance. While conventional PCNSLs were associated with low cerebral blood volume (CBV), perfusion magnetic resonance imaging (MRI) revealed elevated CBV in three cases, consistent with vascular proliferation. All six cases were diagnosed pathologically as having diffuse large B-cell lymphoma (DLBCL) with a non-germinal center B-cell-like (non-GCB) phenotype; marked histiocytic infiltrates and abundant non-neoplastic T-cells were observed in most cases. Expression of vascular endothelial growth factor and CD105 in the lymphoma cells and the small vessels, respectively, suggested angiogenesis within the neoplasms. Neoplastic cells were immunohistochemically negative for programmed cell death ligand 1 (PD-L1), while immune cells in the microenvironment were positive for PD-L1. Mutations in the MYD88 gene (MYD88) (L265P) and the CD79B gene (CD79B) were detected in five and one case, respectively. As therapeutic modalities used for PCNSLs differ from those that target conventional hemorrhagic neoplasms, full tissue diagnoses of all hemorrhagic CNS tumors are clearly warranted.
Collapse
Affiliation(s)
- Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Jun Muto
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sachiko Iba
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuya Shiogama
- Division of Morphology and Cell Function, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yuta Tsuyuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuo Sugita
- Department of Neuropathology, St. Mary's Hospital, Kurume, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masato Abe
- Department of Pathology, School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
11
|
Omidi Y, Kianinejad N, Kwon Y, Omidian H. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier. Expert Rev Clin Pharmacol 2021; 14:357-381. [PMID: 33554678 DOI: 10.1080/17512433.2021.1887729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The blood-brain barrier (BBB) selectively impedes the transportation of drug molecules into the brain, which makes the drug delivery and targeting of brain tumors very challenging.Areas covered: Having surveyed the recent literature, comprehensive insights are given into the impacts of the BBB on the advanced drug delivery and targeting modalities for brain tumors.Expert opinion: Brain capillary endothelial cells form the BBB in association with astrocytes, pericytes, neurons, and extracellular matrix. Coop of these forms the complex setting of neurovascular unite. The BBB maintains the brain homeostasis by restrictive controlling of the blood circulating nutrients/substances trafficking. Despite substantial progress on therapy of brain tumors, there is no impeccable strategy to safely deliver chemotherapeutics into the brain. Various strategies have been applied to deliver chemotherapeutics into the brain (e.g. BBB opening, direct delivery by infusion, injection, microdialysis, and implants, and smart nanosystems), which hold different pros and cons. Of note, smart nanoscale multifunctional nanomedicines can serve as targeting, imaging, and treatment modality for brain tumors. Given that aggressive brain tumors (e.g. gliomas) are often unresponsive to any treatments, an in-depth understanding of the molecular/cellular complexity of brain tumors might help the development of smart and effective treatment modalities.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Young Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
12
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
13
|
YİLMAZ S, GÖÇMEN Y, TOKPINAR A, UÇAR İ, ATEŞ Ş, AVNİOĞLU S, NİSARİ M. Parasetamol Verilen Gebe Ratlarda Fetüs Karaciğerleri Üzerine VEGF A, SOST ve Fetuin A Etkileri. ACTA MEDICA ALANYA 2020. [DOI: 10.30565/medalanya.688286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH, Choi S, Choi YL, Joung JG, Park WY, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ, Lee HO. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 2020; 11:2285. [PMID: 32385277 PMCID: PMC7210975 DOI: 10.1038/s41467-020-16164-1] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell transcriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 06351, Seoul, Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Bo Mi Ku
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Soyean Choi
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Hyun Ae Jung
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jong-Mu Sun
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Se-Hoon Lee
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jin Seok Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Keunchil Park
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Myung-Ju Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea.
| |
Collapse
|
15
|
Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res 2020; 10:1876-1887. [PMID: 32367425 DOI: 10.1007/s13346-020-00773-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) impedes the efficient delivery of systemically administered drugs to brain tumors, thus reducing the therapeutic efficacy. To overcome the limitations of intravascular delivery, convention-enhanced delivery (CED) was introduced to infuse drugs directly into the brain tumor using a catheter with a continuous positive pressure. However, tissue distribution and retention of the infused drugs are significantly hindered by microenvironmental factors of the tumor such as the extracellular matrix and lymphatic drainage system in the brain. Here, we leveraged a liposomal formulation to simultaneously improve tissue distribution and retention of drugs infused in the brain tumor via the CED method. Various liposomal formulations with different surface charge, PEGylation, and transition temperature (Tm) were prepared to test the cellular uptake in vitro, and the tissue distribution and retention in the brain. In in vitro studies, PEGylated liposomal formulations with a positive surface charge and high Tm showed the most efficient cellular uptake among the tested formulations. In in vivo studies, the liposomal formulations were infused directly into the brain via the CED method. PEGylated liposomal formulations with a positive surface charge and high Tm showed more efficient distribution and retention in both normal and tumor tissues while only-PEGylated formulations displayed rapid clearance from the tissues to cervical lymph nodes. Furthermore, we demonstrated that the CED of liposomal everolimus prepared with the PEGylated formulation with a positive surface charge and high Tm resulted in superior therapeutic effects for glioblastoma treatment compared to other formulations. Graphical abstract.
Collapse
Affiliation(s)
- Yunho Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Medfai H, Khalil A, Rousseau A, Nuyens V, Paumann-Page M, Sevcnikar B, Furtmüller PG, Obinger C, Moguilevsky N, Peulen O, Herfs M, Castronovo V, Amri M, Van Antwerpen P, Vanhamme L, Zouaoui Boudjeltia K. Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt, and FAK pathways. Cardiovasc Res 2020; 115:463-475. [PMID: 29982533 DOI: 10.1093/cvr/cvy179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Aims The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.
Collapse
Affiliation(s)
- Hayfa Medfai
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium.,Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Alia Khalil
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Martina Paumann-Page
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Benjamin Sevcnikar
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Moguilevsky
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Michael Herfs
- Department of Pathology, Laboratory of Experimental Pathology, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Mohamed Amri
- Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la plaine CP205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium; and
| | - Luc Vanhamme
- Laboratory of Molecular Parasitology, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| |
Collapse
|
17
|
EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget 2020; 11:759-774. [PMID: 32165998 PMCID: PMC7055546 DOI: 10.18632/oncotarget.27374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Cancer stem-like cells (CSLCs) contribute to GBM invasiveness, representing promising targets. BAL101553, a prodrug of BAL27862, is a novel small molecule tubulin-binding agent, promoting tumor cell death through spindle assembly checkpoint activation, which is currently in Phase 1/2a in advanced solid tumor patients including GBM. This study aimed to evaluate long-term daily oral BAL101553 treatment of mice orthotopically grafted with GBM CSLCs (GBM6) according to EB1 expression-level, and to decipher its mechanism of action on GBM stem cells. Oral treatment with BAL101553 for 100 days provoked a large EB1 expression level-dependent survival benefit, together with a decrease in tumor growth and brain invasion. Formation of vascular structures by the fluorescent GBM6-GFP-sh0 cells, mimicking endothelial vascular networks, was observed in the brains of control grafted mice. Following BAL101553 treatment, vessels were no longer detectable, suggesting inhibition of the endothelial trans-differentiation of GBM stem cells. In vitro, BAL27862 treatment resulted in a switch to the endothelial-like phenotype of GBM6 towards an astrocytic phenotype. Moreover, the drug inhibited secretion of VEGF, thus preventing normal endothelial cell migration activated by CSLCs. The decrease in VEGF secretion was confirmed in a human GBM explant following drug treatment. Altogether, our data first confirm the potential of EB1 expression as a response-predictive biomarker of BAL101553 in GBM we previously published and add new insights in BAL101553 long-term action by counteracting CSLCs mediated tumor angiogenesis. Our results strongly support BAL101553 clinical studies in GBM patients.
Collapse
|
18
|
Khanyile S, Masamba P, Oyinloye BE, Mbatha LS, Kappo AP. Current Biochemical Applications and Future Prospects of Chlorotoxin in Cancer Diagnostics and Therapeutics. Adv Pharm Bull 2019; 9:510-520. [PMID: 31857956 PMCID: PMC6912174 DOI: 10.15171/apb.2019.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/22/2022] Open
Abstract
Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits. This article therefore reviews the currently known applications of CTX and suggests diverse ways in which it can be applied for the design of improved drugs and diagnostic tools for cancer.
Collapse
Affiliation(s)
- Sbonelo Khanyile
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Priscilla Masamba
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.,Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
19
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
20
|
Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, Mukasa A, Nishikawa R, Tamura K, Narita Y, Hamada A, Masutomi K, Ichimura K. Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci 2019; 110:2247-2257. [PMID: 31099446 PMCID: PMC6609810 DOI: 10.1111/cas.14067] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.
Collapse
Affiliation(s)
- Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunichiro Miki
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Fukuoka
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Raku Shinkyo
- Tsukuba Research Laboratory, Eisai, Tsukuba, Japan
| | | | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
21
|
Tri-block copolymer nanoparticles modified with folic acid for temozolomide delivery in glioblastoma. Int J Biochem Cell Biol 2019; 108:72-83. [DOI: 10.1016/j.biocel.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 02/03/2023]
|
22
|
Mahzouni P, Shavakhi M. Prostate-Specific Membrane Antigen Expression in Neovasculature of Glioblastoma Multiforme. Adv Biomed Res 2019; 8:18. [PMID: 30993088 PMCID: PMC6425742 DOI: 10.4103/abr.abr_209_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most malignant brain tumor with a poor prognosis that can be very difficult to cure, and the current treatment options have no optimal outcomes. Hence, it is essential to find new treatment modalities. Histologically, this tumor has high microvascular density that makes it desirable for vascular target agent drugs. Prostate-specific membrane antigen (PSMA) is a novel antigen with unique features that expresses in the vascular endothelium of some malignant tumors. Materials and Methods: Formalin-fixed paraffin-embedded tissues from sixty patients who underwent GBM tumor resection from 2012 to 2016 were evaluated for the expression of PSMA by immunohistochemistry. Sections were also assessed for the extent and intensity of endothelial staining in tumor microvessels and for clinicopathologic factor correlation. Results: A considerable PSMA expression level was detected in 66% of the cases, and the intensity was strong and moderate in 63%. There was no significant correlation neither between PSMA expression with tumor site, presence of necrosis, and endothelial proliferation nor with age and sex. Conclusion: The expression of PSMA in GBM, as observed in the current study, may suggest a new role of PSMA-targeted therapy and indicate more investigations focused on complementary treatment strategies that specifically target tumor vasculature.
Collapse
Affiliation(s)
- Parvin Mahzouni
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Shavakhi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Anti-Invasion and Antiangiogenic Effects of Stellettin B through Inhibition of the Akt/Girdin Signaling Pathway and VEGF in Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11020220. [PMID: 30769863 PMCID: PMC6406657 DOI: 10.3390/cancers11020220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and invasion are highly related with tumor metastatic potential and recurrence prediction in the most aggressive brain cancer, glioblastoma multiforme (GBM). For the first time, this study reveals that marine-sponge-derived stellettin B reduces angiogenesis and invasion. We discovered that stellettin B reduces migration of glioblastoma cells by scratch wound healing assay and invasion via chamber transwell assay. Further, stellettin B downregulates Akt/Mammalian Target of Rapamycin (Akt/mTOR) and Signal transducer and activator of transcription 3 (Stat3) signaling pathways, which are essential for invasion and angiogenesis in glioblastoma. This study further demonstrates that stellettin B affects filamentous actin (F-actin) rearrangement by decreasing the cross-linkage of phosphor-Girdin (p-Girdin), which attenuates glioblastoma cell invasion. Moreover, stellettin B blocks the expression and secretion of a major proangiogenic factor, vascular endothelial growth factor (VEGF), in glioblastoma cells. Stellettin B also reduces angiogenic tubule formation in human umbilical vein endothelial cells (HUVECs). In vivo, we observed that stellettin B decreased blood vesicle formation in developmental zebrafish and suppressed angiogenesis in Matrigel plug transplant assay in mice. Decreased VEGF transcriptional expression was also found in stellettin B⁻treated zebrafish embryos. Overall, we conclude that stellettin B might be a potential antiangiogenic and anti-invasion agent for future development of therapeutic agents for cancer therapy.
Collapse
|
24
|
Guarnaccia L, Navone SE, Trombetta E, Cordiglieri C, Cherubini A, Crisà FM, Rampini P, Miozzo M, Fontana L, Caroli M, Locatelli M, Riboni L, Campanella R, Marfia G. Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy. Sci Rep 2018; 8:8748. [PMID: 29884885 PMCID: PMC5993734 DOI: 10.1038/s41598-018-27116-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common brain tumors, with diverse biological behaviour. Glioblastoma (GBM), the most aggressive and with the worst prognosis, is characterized by an intense and aberrant angiogenesis, which distinguishes it from low-grade gliomas (LGGs) and benign expansive lesions, as meningiomas (MNGs). With increasing evidence for the importance of vascularization in tumor biology, we focused on the isolation and characterization of endothelial cells (ECs) from primary GBMs, LGGs and MNGs. Gene expression analysis by Real-Time PCR, immunofluorescence and flow cytometry analysis, tube-like structures formation and vascular permeability assays were performed. Our results showed a higher efficiency of ECs to form a complex vascular architecture, as well as a greater impairment of a brain blood barrier model, and an overexpression of pro-angiogenic mediators in GBM than in LGG and MNG. Furthermore, administration of temozolomide, bevacizumab, and sunitinib triggered a different proliferative, apoptotic and angiogenic response, in a dose and time-dependent manner. An increased resistance to temozolomide was observed in T98G cells co-cultured in GBM-EC conditioned media. Therefore, we developed a novel platform to reproduce tumor vascularization as “disease in a dish”, which allows us to perform screening of sensitivity/resistance to drugs, in order to optimize targeted approaches to GBM therapy.
Collapse
Affiliation(s)
- Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Laboratory of Clinical Chemistry and Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Chiara Cordiglieri
- Istituto di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandro Cherubini
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Maria Crisà
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Therapeutic Monoclonal Antibodies Delivery for the Glioblastoma Treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:61-80. [PMID: 29680243 DOI: 10.1016/bs.apcsb.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and challenging primary malignant brain tumor, being the median overall survival between 10 and 14 months due to its invasive characteristics. GBM treatment is mainly based on the maximal surgical resection and radiotherapy associated to chemotherapy. Monoclonal antibodies (mAbs) have been used in chemotherapy protocols for GBM treatment in order to improve immunotherapy and antiangiogenic processes. High specificity and affinity of mAbs for biological targets make them highly used for brain tumor therapy. Specifically, antiangiogenic mAbs have been wisely indicated in chemotherapy protocols because GBM is the most vascularized tumors in humans with high expression of cytokines. However, mAb-based therapy is not that effective due to the aggressive spread of the tumor associated to the difficulty in the access of mAb into the brain (due to the blood-brain barrier). For that reason, nanobiotechnology has played an important role in the treatment of several tumors, mainly in the tumors of difficult access, such as GBM. In this chapter will be discussed strategies related with nanobiotechnology applied to the mAb delivery and how these therapeutics can improve the GBM treatment and life quality of the patient.
Collapse
|
26
|
Nowacka A, Smuczyński W, Rość D, Woźniak—Dąbrowska K, Śniegocki M. Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors. PLoS One 2018; 13:e0192395. [PMID: 29590109 PMCID: PMC5873928 DOI: 10.1371/journal.pone.0192395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/23/2018] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis plays an essential role in tumors development. In case of central nervous system tumors, the most important role in this process plays VEGF-A. The purpose of this study was to determine the plasma concentration of this agent in patients treated surgically because of intracranial tumors. The study involved 48 adult patients, both sexes, treated surgically because of a brain tumor. The control group consisted of 50 adult volunteers of both sexes, without cancer diagnosis. Based on the studies, it was found that serum VEGF-A levels before surgery are higher in patients with central nervous system tumors (10.39–150.57 pg/ml, median 41.70 pg/ml) than in non-cancer patients (0.00–130.77 pg/ml, median 22.56 pg/ml). The association between serum VEGF-A level and malignancy and histological type of intracranial tumor has not beed confirmed. The highest average preoperative serum VEGF-A level was found in patients with low grade gliomas, slightly lower (close to each other) in those with high grade gliomas and meningiomas, while the lowest level was characteristic for metastatic tumors. High variation in results was observed in patients with low grade gliomas (52.56 pg/ml)—higher than those reported in patients with high grade gliomas (32.38 pg/ml). In the rest types of tumors the differentiation was similar and oscillated within 23.08–27.50 pg/ml.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Neurotraumatology and Paediatric Neurosurgery, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland
- * E-mail:
| | - Wojciech Smuczyński
- Department of Neurotraumatology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland
| | - Danuta Rość
- Department of Pathophysiology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland
| | - Kamila Woźniak—Dąbrowska
- Department of Neurosurgery, Neurotraumatology and Paediatric Neurosurgery, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland
| | - Maciej Śniegocki
- Department of Neurosurgery, Neurotraumatology and Paediatric Neurosurgery, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
27
|
Effects of a Propolis Extract on the Viability of and Levels of Cytoskeletal and Regulatory Proteins in Rat Brain Astrocytes: an In Vitro Study. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9680-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Craveiro RB, Ehrhardt M, Velz J, Olschewski M, Goetz B, Pietsch T, Dilloo D. The anti-neoplastic activity of Vandetanib against high-risk medulloblastoma variants is profoundly enhanced by additional PI3K inhibition. Oncotarget 2017; 8:46915-46927. [PMID: 28159923 PMCID: PMC5564532 DOI: 10.18632/oncotarget.14911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/26/2016] [Indexed: 12/26/2022] Open
Abstract
Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis.Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants.
Collapse
Affiliation(s)
- Rogerio B Craveiro
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| | - Michael Ehrhardt
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| | - Julia Velz
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| | - Martin Olschewski
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| | - Barbara Goetz
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, D-53105 Bonn, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, D-53113 Bonn, Germany
| |
Collapse
|
29
|
Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model. PLoS One 2016; 11:e0168174. [PMID: 28005983 PMCID: PMC5179246 DOI: 10.1371/journal.pone.0168174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/26/2016] [Indexed: 01/05/2023] Open
Abstract
Objectives Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. Methods We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. Results In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Conclusion Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.
Collapse
|
30
|
Spinelli FM, Vitale DL, Demarchi G, Cristina C, Alaniz L. The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunology 2015; 4:e52. [PMID: 26719798 PMCID: PMC4685440 DOI: 10.1038/cti.2015.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
The relationship between the immune system and angiogenesis has been described in several contexts, both in physiological and pathological conditions, as pregnancy and cancer. In fact, different types of immune cells, such as myeloid, macrophages and denditric cells, are able to modulate tumor neovascularization. On the other hand, tumor microenvironment also includes extracellular matrix components like hyaluronan, which has a deregulated synthesis in different tumors. Hyaluronan is a glycosaminoglycan, normally present in the extracellular matrix of tissues in continuous remodeling (embryogenesis or wound healing processes) and acts as an important modulator of cell behavior by different mechanisms, including angiogenesis. In this review, we discuss hyaluronan as a modulator of tumor angiogenesis, focusing in intracellular signaling mediated by its receptors expressed on different immune cells. Recent observations suggest that the immune system is an important component in tumoural angiogenesis. Therefore, immune modulation could have an impact in anti-angiogenic therapy as a new therapeutic strategy, which in turn might improve effectiveness of treatment in cancer patients.
Collapse
Affiliation(s)
- Fiorella M Spinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Daiana L Vitale
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Gianina Demarchi
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| |
Collapse
|
31
|
Feng X, Gao X, Kang T, Jiang D, Yao J, Jing Y, Song Q, Jiang X, Liang J, Chen J. Mammary-Derived Growth Inhibitor Targeting Peptide-Modified PEG–PLA Nanoparticles for Enhanced Targeted Glioblastoma Therapy. Bioconjug Chem 2015. [DOI: 10.1021/acs.bioconjchem.5b00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingye Feng
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xiaoling Gao
- Department
of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Ting Kang
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Di Jiang
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jianhui Yao
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yixian Jing
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qingxiang Song
- Department
of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xinguo Jiang
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jianying Liang
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jun Chen
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| |
Collapse
|
32
|
Nomura N, Pastorino S, Jiang P, Lambert G, Crawford JR, Gymnopoulos M, Piccioni D, Juarez T, Pingle SC, Makale M, Kesari S. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int 2014; 14:26. [PMID: 24645697 PMCID: PMC3994554 DOI: 10.1186/1475-2867-14-26] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background Primary and secondary brain cancers are highly treatment resistant, and their marked angiogenesis attracts interest as a potential therapeutic target. Recent observations reveal that the microvascular endothelium of primary high-grade gliomas expresses prostate specific membrane antigen (PSMA). Breast cancers express PSMA and they frequently form secondary brain tumors. Hence we report here our pilot study addressing the feasibility of PSMA targeting in brain and metastatic breast tumors, by examining PSMA levels in all glioma grades (19 patients) and in breast cancer brain metastases (5 patients). Methods Tumor specimens were acquired from archival material and normal brain tissues from autopsies. Tissue were stained and probed for PSMA, and the expression levels imaged and quantified using automated hardware and software. PSMA staining intensities of glioma subtypes, breast tumors, and breast tumor brain metastases were compared statistically versus normals. Results Normal brain microvessels (4 autopsies) did not stain for PSMA, while a small proportion (<5%) of healthy neurons stained, and were surrounded by an intact blood brain barrier. Tumor microvessels of the highly angiogenic grade IV gliomas showed intense PSMA staining which varied between patients and was significantly higher (p < 0.05) than normal brain. Grade I gliomas showed moderate vessel staining, while grade II and III gliomas had no vessel staining, but a few (<2%) of the tumor cells stained. Both primary breast cancer tissues and the associated brain metastases exhibited vascular PSMA staining, although the intensity of staining was generally less for the metastatic lesions. Conclusions Our results align with and extend previous data showing PSMA expression in blood vessels of gliomas and breast cancer brain metastases. These results provide a rationale for more comprehensive studies to explore PSMA targeted agents for treating secondary brain tumors with PSMA expressing vasculature. Moreover, given that PSMA participates in angiogenesis, cell signaling, tumor survival, and invasion, characterizing its expression may help guide later investigations of the poorly understood process of low grade glioma progression to glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Santosh Kesari
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, 3855 Health Sciences Drive, MC#0819, La Jolla, CA 92093-0819, USA.
| |
Collapse
|
33
|
Miller R, DeCandio ML, Dixon-Mah Y, Giglio P, Vandergrift WA, Banik NL, Patel SJ, Varma AK, Das A. Molecular Targets and Treatment of Meningioma. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2014; 1:1000101. [PMID: 25485306 PMCID: PMC4255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Meningiomas are by far the most common tumors arising from the meninges. A myriad of aberrant signaling pathways involved with meningioma tumorigenesis, have been discovered. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis. An understanding of the genetic and molecular profile of meningioma would provide a valuable first step towards developing more effective treatments for this intracranial tumor. Chromosomes 1, 10, 14, 22, their associated genes, and other potential targets have been linked to meningioma proliferation and progression. It is presumed that through an understanding of these genetic factors, more educated meningioma treatment techniques can be implemented. Future therapies will include combinations of targeted molecular agents including gene therapy, si-RNA mediation, proton therapy, and other approaches as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas. This review provides an overview of the current knowledge of the genetic, signaling and molecular profile of meningioma and possible treatments strategies associated with such profiles.
Collapse
Affiliation(s)
- Rickey Miller
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michele L. DeCandio
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yaenette Dixon-Mah
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pierre Giglio
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - W Alex Vandergrift
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Sunil. J. Patel
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abhay K. Varma
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA,Corresponding Authors: Arabinda Das and Abhay Varma, Department of Neurosciences (Divisions of Neurology and Neurosurgery) and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, SC, 29425, USA, ,
| | - Arabinda Das
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA,Corresponding Authors: Arabinda Das and Abhay Varma, Department of Neurosciences (Divisions of Neurology and Neurosurgery) and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, SC, 29425, USA, ,
| |
Collapse
|
34
|
The VEGF pathway in lung cancer. Cancer Chemother Pharmacol 2013; 72:1169-81. [DOI: 10.1007/s00280-013-2298-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
|
35
|
Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW, Mammoto A. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1293-1305. [PMID: 23928381 DOI: 10.1016/j.ajpath.2013.06.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/14/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Glioblastoma is a highly vascularized brain tumor, and antiangiogenic therapy improves its progression-free survival. However, current antiangiogenic therapy induces serious adverse effects including neuronal cytotoxicity and tumor invasiveness and resistance to therapy. Although it has been suggested that the physical microenvironment has a key role in tumor angiogenesis and progression, the mechanism by which physical properties of extracellular matrix control tumor angiogenesis and glioblastoma progression is not completely understood. Herein we show that physical compaction (the process in which cells gather and pack together and cause associated changes in cell shape and size) of human glioblastoma cell lines U87MG, U251, and LN229 induces expression of collagen types IV and VI and the collagen crosslinking enzyme lysyl oxidase and up-regulates in vitro expression of the angiogenic factor vascular endothelial growth factor. The lysyl oxidase inhibitor β-aminopropionitrile disrupts collagen structure in the tumor and inhibits tumor angiogenesis and glioblastoma multiforme growth in a mouse orthotopic brain tumor model. Similarly, d-penicillamine, which inhibits lysyl oxidase enzymatic activity by depleting intracerebral copper, also exhibits antiangiogenic effects on brain tumor growth in mice. These findings suggest that tumor microenvironment controlled by collagen structure is important in tumor angiogenesis and brain tumor progression.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark W Kieran
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
A very rare cancer in Down syndrome: medulloblastoma. Epidemiological data from 13 countries. J Neurooncol 2013; 112:107-14. [PMID: 23307327 DOI: 10.1007/s11060-012-1041-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.
Collapse
|
37
|
PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 2013; 34:196-208. [DOI: 10.1016/j.biomaterials.2012.09.044] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
|
38
|
Oh SH, Kim WY, Lee OH, Kang JH, Woo JK, Kim JH, Glisson B, Lee HY. Insulin-like growth factor binding protein-3 suppresses vascular endothelial growth factor expression and tumor angiogenesis in head and neck squamous cell carcinoma. Cancer Sci 2012; 103:1259-66. [PMID: 22494072 DOI: 10.1111/j.1349-7006.2012.02301.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/17/2012] [Accepted: 03/24/2012] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the process by which new blood vessels are recruited to existing ones, is essential for tumor development. Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), which modulates bioavailability of IGF, has been studied for its potential role in angiogenesis during tissue regeneration and cancer development. In this study, we assessed the role of IGFBP-3 in tumor angiogenesis in head and neck squamous cell carcinoma (HNSCC) and human umbilical vein endothelial cells (HUVECs) using adenoviral (Ad-BP3) and recombinant (rBP3) IGFBP-3. Using an in vivo orthotopic tongue tumor model, we confirmed that both Ad-BP3 and rBP3 suppress the growth of UMSCC38 HNSCC cells in vivo. Ad-BP3 inhibited vascularization in tongue tumors and chorio-allantoic membrane, and suppressed angiogenesis-stimulating activities in UMSCC38 cells. In HUVECs, Ad-BP3 decreased migration, invasion, and tube formation. rBP3 also suppressed production of vascular endothelial growth factor (VEGF) in HUVECs and UMSCC38 cells. IGFBP-3-GGG, a mutant IGFBP-3 with loss of IGF binding capacity, suppressed VEGF production. In addition, we found that IGFBP-3 suppressed VEGF expression, even in mouse embryonic fibroblasts from an IGF-1R-null mouse. Finally, we demonstrated that IGFBP-3-GGG inhibits tumor angiogenesis and growth to the same degree as wild-type IGFBP-3. Taken together, these results support the hypothesis that IGFBP-3 has anti-angiogenic activity in HNSCC, at least in part due to IGF-independent suppression of VEGF production from vascular endothelial cells and cancer cells.
Collapse
|
39
|
Singh JB, Oevermann A, Lang J, Vandevelde M, Doherr M, Henke D, Gorgas D. Contrast media enhancement of intracranial lesions in magnetic resonance imaging does not reflect histopathologic findings consistently. Vet Radiol Ultrasound 2012; 52:619-26. [PMID: 21777330 DOI: 10.1111/j.1740-8261.2011.01848.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Certain magnetic resonance (MR) enhancement patterns are often considered to be associated with a specific diagnosis but experience shows that this association is not always consistent. Therefore, it is not clear how reliably contrast enhancement patterns correlate with specific tissue changes. We investigated the detailed histomorphologic findings of intracranial lesions in relation to Gadodiamide contrast enhancement in 55 lesions from 55 patients, nine cats, and 46 dogs. Lesions were divided into areas according to their contrast enhancement; therefore 81 areas resulted from the 55 lesions which were directly compared with histopathology. In 40 of 55 lesions (73%), the histomorphologic features explained the contrast enhancement pattern. In particular, vascular proliferation and dilated vessels occurred significantly more often in areas with enhancement than in areas without enhancement (P = 0.044). In 15 lesions, there was no association between MR images and histologic findings. In particular, contrast enhancement was found within necrotic areas (10 areas) and ring enhancement was seen in lesions without central necrosis (five lesions). These findings imply that necrosis cannot be differentiated reliably from viable tissue based on postcontrast images. Diffusion of contrast medium within lesions and time delays after contrast medium administration probably play important roles in the presence and patterns of contrast enhancement. Thus, histologic features of lesions cannot be predicted solely by contrast enhancement patterns.
Collapse
|
40
|
Ulrich F, Ma LH, Baker RG, Torres-Vázquez J. Neurovascular development in the embryonic zebrafish hindbrain. Dev Biol 2011; 357:134-51. [PMID: 21745463 DOI: 10.1016/j.ydbio.2011.06.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 01/05/2023]
Abstract
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos.
Collapse
Affiliation(s)
- Florian Ulrich
- Department of Developmental Genetics, Skirball Institute of Molecular Medicine, New York City, New York 10016, USA.
| | | | | | | |
Collapse
|
41
|
Chen P, Fernald B, Lin W. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm. Phys Med Biol 2011; 56:3985-4000. [DOI: 10.1088/0031-9155/56/13/015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Abstract
Monoclonal antibodies (mAbs) are used with increasing success against many tumors but, for brain tumors, the blood-brain barrier (BBB) is a special concern. The BBB prevents antibody entry to the normal brain; however, its role in brain tumor therapy is more complex. The BBB is closest to normal at micro-tumor sites; its properties and importance change as the tumor grows. In this review, evolving insight into the role of the BBB is balanced against other factors that affect efficacy or interpretation when mAbs are used against brain tumor targets. As specific examples, glioblastoma multiforme (GBM), primary central nervous system lymphoma (PCNSL) and blood-borne metastases from breast cancer are discussed in the context of treatment, respectively, with the mAbs bevacizumab, rituximab, and trastuzumab, each of which is already widely used against tumor outside the brain. It is suggested that success against brain tumors will require getting past the BBB in two senses: physically, to better attack brain tumor targets and conceptually, to give equal attention to problems that are shared with other tumor sites.
Collapse
Affiliation(s)
- Lois A Lampson
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Ma D, Zhang M, Chen L, Tang Q, Tang X, Mao Y, Zhou L. Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis 2010; 32:102-9. [DOI: 10.1093/carcin/bgq214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Gilert A, Machluf M. Nano to micro delivery systems: targeting angiogenesis in brain tumors. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:20. [PMID: 20932320 PMCID: PMC2964525 DOI: 10.1186/2040-2384-2-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
Abstract
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.
Collapse
Affiliation(s)
- Ariel Gilert
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
45
|
Brunckhorst MK, Wang H, Lu R, Yu Q. Angiopoietin-4 promotes glioblastoma progression by enhancing tumor cell viability and angiogenesis. Cancer Res 2010; 70:7283-93. [PMID: 20823154 DOI: 10.1158/0008-5472.can-09-4125] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive and vascularized aggressive brain tumor. Less than 10% of GBM patients survive >5 years after diagnosis. Angiogenesis plays an important role in GBM growth, and antiangiogenesis-based therapies have shown clinical efficacy for GBM patients. Unfortunately, therapeutic resistance often develops in these patients, suggesting that GBM cells are capable of switching their dependency on one proangiogenic signaling pathway to an alternative one. Therefore, it is important to identify novel angiogenic factors that play essential roles in tumor angiogenesis and GBM progression. Angiopoietins (Ang-1, Ang-2, and Ang-4) are the ligands of the Tie-2 receptor tyrosine kinase (RTK). The roles of Ang-1 and Ang-2 in tumor angiogenesis have been established. However, little is known about how Ang-4 affects tumor angiogenesis and GBM progression and the mechanism underlying its effects. In our current study, we establish that Ang-4 is upregulated in human GBM tissues and cells. We show that, like endothelial cells, human GBM cells express Tie-2 RTK. We first establish that Ang-4 promotes in vivo growth of human GBM cells by promoting tumor angiogenesis and directly activating extracellular signal-regulated kinase 1/2 (Erk1/2) in GBM cells. Our results establish the novel effects of Ang-4 on tumor angiogenesis and GBM progression and suggest that this pro-GBM effect of Ang-4 is mediated by promoting tumor angiogenesis and activating Erk1/2 kinase in GBM cells. Together, our results suggest that the Ang-4-Tie-2 functional axis is an attractive therapeutic target for GBM.
Collapse
Affiliation(s)
- Melissa K Brunckhorst
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
46
|
Liu Y, Carson-Walter EB, Cooper A, Winans BN, Johnson MD, Walter KA. Vascular gene expression patterns are conserved in primary and metastatic brain tumors. J Neurooncol 2010; 99:13-24. [PMID: 20063114 PMCID: PMC2904485 DOI: 10.1007/s11060-009-0105-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/14/2009] [Indexed: 01/07/2023]
Abstract
Malignant primary glial and secondary metastatic brain tumors represent distinct pathological entities. Nevertheless, both tumor types induce profound angiogenic responses in the host brain microvasculature that promote tumor growth. We hypothesized that primary and metastatic tumors induce similar microvascular changes that could function as conserved angiogenesis based therapeutic targets. We previously isolated glioma endothelial marker genes (GEMs) that were selectively upregulated in the microvasculature of proliferating glioblastomas. We sought to determine whether these genes were similarly induced in the microvasculature of metastatic brain tumors. RT-PCR and quantitative RT-PCR were used to screen expression levels of 20 candidate GEMs in primary and metastatic clinical brain tumor specimens. Differentially regulated GEMs were further evaluated by immunohistochemistry or in situ hybridization to localize gene expression using clinical tissue microarrays. Thirteen GEMs were upregulated to a similar degree in both primary and metastatic brain tumors. Most of these genes localize to the cell surface (CXCR7, PV1) or extracellular matrix (COL1A1, COL3A1, COL4A1, COL6A2, MMP14, PXDN) and were selectively expressed by the microvasculature. The shared expression profile between primary and metastatic brain tumors suggests that the molecular pathways driving the angiogenic response are conserved, despite differences in the tumor cells themselves. Anti-angiogenic therapies currently in development for primary brain tumors may prove beneficial for brain metastases and vice versa.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, University of Rochester, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Eleanor B. Carson-Walter
- Department of Neurosurgery, University of Rochester, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Anna Cooper
- Department of Neurosurgery, University of Rochester, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Bethany N. Winans
- Department of Neurosurgery, University of Rochester, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Mahlon D. Johnson
- Department of Neuropathology, University of Rochester, Rochester, NY, USA
| | - Kevin A. Walter
- Department of Neurosurgery, University of Rochester, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
- James P. Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| |
Collapse
|
47
|
Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 2010; 1347:1-10. [PMID: 20553880 DOI: 10.1016/j.brainres.2010.05.096] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/03/2010] [Accepted: 05/31/2010] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes, and neurons. In this study, we analyzed the influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells in a species-consistent in vitro coculture model. We were able to show a barrier integrity-decreasing impact of pericytes by transendothelial electrical resistance (TEER) and (14)C-sucrose permeability measurements. The morphology analysis revealed serrated cell borders and a shift of the endothelial morphology towards a cobblestone shape under the influence of pericytes. The analysis of the two major barrier integrity modulators vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) displayed higher MMP activity and higher levels VEGF, MMP-2, and MMP-9 in the coculture, whereas VEGF levels were decreased by the MMP inhibitor GM6001, indicating a complex interplay of both. Inhibition experiments with neutralizing VEGF antibody and GM6001 increased the TEER, which proves the involvement of VEGF and MMPs in the barrier-decreasing process. Analysis of occludin yielded decreased protein content and discontinuous expression at the endothelial cell borders under the influence of pericytes. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity via MMPs and VEGF.
Collapse
|