1
|
Han JH, Park SY, Myung SH, Park J, Chang JH, Kim TH. Suppression of neointimal hyperplasia induced by arteriovenous anastomosis and balloon injury in rats by multimeric tumor necrosis factor-related apoptosis-inducing ligand. Mol Cells 2024; 47:100075. [PMID: 38823606 PMCID: PMC11227017 DOI: 10.1016/j.mocell.2024.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Excessive blood vessel wall thickening, known as intimal hyperplasia, can result from injury or inflammation and increase the risk of vascular diseases. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays key roles in tumor surveillance, autoimmune diseases, and apoptosis; however, its role in vascular stenosis remains controversial. Treatment with recombinant isoleucine zipper hexamerization domain soluble TRAIL (ILz(6):TRAIL) significantly inhibited the progression of neointimal hyperplasia (NH) induced by anastomosis of the carotid artery and jugular vein dose dependently, and adenovirus expressing secretable ILz(6):TRAIL also inhibited NH induced by balloon injury in the femoral artery of rats. This study demonstrated the preventive and partial regressive effects of ILz(6):TRAIL on anastomosis of the carotid artery and jugular vein- or balloon-induced NH.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Sun-Young Park
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Seung-Hyun Myung
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Junghee Park
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Jeong Hwan Chang
- Surgery Department, Chang Surgical Clinic, Gwangju 62274, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea.
| |
Collapse
|
2
|
Davidovich P, Higgins CA, Najda Z, Longley DB, Martin SJ. cFLIP L acts as a suppressor of TRAIL- and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep 2023; 42:113476. [PMID: 37988267 DOI: 10.1016/j.celrep.2023.113476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.
Collapse
Affiliation(s)
- Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Catherine A Higgins
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
3
|
Bock FJ, Riley JS. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ 2023; 30:293-303. [PMID: 36376381 PMCID: PMC9661468 DOI: 10.1038/s41418-022-01082-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.
Collapse
Affiliation(s)
- Florian J Bock
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Vu TQ, Peruzzi JA, Sant'Anna LE, Roth EW, Kamat NP. Lipid Phase Separation in Vesicles Enhances TRAIL-Mediated Cytotoxicity. NANO LETTERS 2022; 22:2627-2634. [PMID: 35298184 PMCID: PMC9680886 DOI: 10.1021/acs.nanolett.1c04365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein. Vesicles with phase-separated TRAIL presentation induce more cell death in Jurkat cancer cells than vesicles with uniformly presented TRAIL, and cytotoxicity is dependent on TRAIL density. We assess this relationship in other cancer cell lines and demonstrate that phase-separated vesicles with TRAIL only enhance cytotoxicity through one TRAIL receptor, DR5, while another TRAIL receptor, DR4, is less sensitive to TRAIL density. This work demonstrates a rapid and accessible method to control protein conjugation and density on vesicles that can be adopted to other nanoparticle systems to improve receptor signaling by nanoparticles.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Preclinical studies of a death receptor 5 fusion protein that ameliorates acute liver failure. J Mol Med (Berl) 2019; 97:1247-1261. [PMID: 31230087 DOI: 10.1007/s00109-019-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease with a high mortality rate. There is an urgent need to develop new drugs with high efficacy and low toxicity. In this study, we produced a pharmaceutical-grade soluble death receptor 5 (sDR5)-Fc fusion protein for treating ALF and evaluated the pharmacology, safety, pharmacokinetics, efficacy, and mechanisms of sDR5-Fc in mice, rats, and cynomolgus monkeys. sDR5-Fc bound with high affinity to both human and monkey tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively blocked TRAIL-induced apoptosis in vitro and significantly ameliorated ALF induced by concanavalin A (Con A) in mice. Mechanistically, sDR5-Fc inhibited hepatocyte death and reduced inflammation in vivo. Furthermore, sDR5-Fc attenuated the production of inflammatory cytokines by splenocytes activated with Con A or an anti-CD3 antibody in vitro. Consistent with these results, splenocytes from TRAIL-/- mice produced much lower levels of inflammatory cytokines than those from TRAIL+/+ mice. In cynomolgus monkeys, sDR5-Fc was safe and well tolerated when intravenously administered as a single dose of up to 1200 mg/kg or multiple doses of 100 mg/kg. After treatment with a single dose, linear pharmacokinetics with a mean half-life of > 1.9 days were observed. After 12 weekly doses, sDR5-Fc exposure increased in an approximately dose-proportional manner, and the mean accumulation ratio ranged from 1.82- to 2.11-fold. These results support further clinical development of our sDR5-Fc protein as the first TRAIL-targeting drug for ALF treatment. KEY MESSAGES: sDR5-Fc binds with high affinity to TRAIL to effectively block TRAIL-induced apoptosis. sDR5-Fc ameliorates Con A-induced acute liver failure in mice by inhibiting hepatocyte death and inflammation. sDR5-Fc or TRAIL knockout attenuates the production of inflammatory cytokines by activated splenocytes in vitro. sDR5-Fc is safe and well tolerated in acute or long-term toxicity study.
Collapse
|
6
|
Medler J, Nelke J, Weisenberger D, Steinfatt T, Rothaug M, Berr S, Hünig T, Beilhack A, Wajant H. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis 2019; 10:224. [PMID: 30833543 PMCID: PMC6399339 DOI: 10.1038/s41419-019-1456-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed.
Collapse
Affiliation(s)
- Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Johannes Nelke
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, University Hospital of Würzburg, Zinklesweg 10, 97078, Würzburg, Germany
| | - Moritz Rothaug
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Susanne Berr
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital of Würzburg, Zinklesweg 10, 97078, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.
| |
Collapse
|
7
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
8
|
Braithwaite AT, Marriott HM, Lawrie A. Divergent Roles for TRAIL in Lung Diseases. Front Med (Lausanne) 2018; 5:212. [PMID: 30101145 PMCID: PMC6072839 DOI: 10.3389/fmed.2018.00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a widely expressed cytokine that can bind five different receptors. TRAIL has been of particular interest for its proposed ability to selectively induce apoptosis in tumour cells. However, it has also been found to regulate a wide variety of non-canonical cellular effects including survival, migration and proliferation via kinase signalling pathways. Lung diseases represent a wide range of conditions affecting multiple tissues. TRAIL has been implicated in several biological processes underlying lung diseases, including angiogenesis, inflammation, and immune regulation. For example, TRAIL is detrimental in pulmonary arterial hypertension—it is upregulated in patient serum and lungs, and drives the underlying proliferative pulmonary vascular remodelling in rodent models. However, TRAIL protects against pulmonary fibrosis in mice models—by inducing apoptosis of neutrophils—and reduced serum TRAIL is found in patients. Conversely, in the airways TRAIL positively regulates inflammation and immune response. In COPD patients and asthmatic patients challenged with antigen, TRAIL and its death receptors are upregulated in serum and airways. Furthermore, TRAIL-deleted mouse models have reduced airway inflammation and remodelling. In the context of respiratory infections, TRAIL assists in immune response, e.g., via T-cell toxicity in influenza infection, and neutrophil killing in S. pneumoniae infection. In this mini-review, we examine the functions of TRAIL and highlight the diverse roles TRAIL has in diseases affecting the lung. Disentangling the facets of TRAIL signalling in lung diseases could help in understanding their pathogenic processes and targeting novel treatments.
Collapse
Affiliation(s)
- Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| |
Collapse
|
9
|
Ralff MD, El-Deiry WS. TRAIL pathway targeting therapeutics. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:197-204. [PMID: 30740527 DOI: 10.1080/23808993.2018.1476062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction Despite decades of focused research efforts, cancer remains a significant cause of morbidity and mortality. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is capable of inducing cell death selectively in cancer cells while sparing normal cells. Areas covered In this review, the authors cover TRA therapy and strategies that have been undertaken to improve their efficacy, as well as unconventional approaches to TRAIL pathway activation including TRAIL-inducing small molecules. They also discuss mechanisms of resistance to TRAIL and the use of combination strategies to overcome it. Expert commentary Targeting the TRAIL pathway has been of interest in oncology, and although initial clinical trials of TRAIL receptor agonists (TRAs) showed limitations, novel approaches represent the future of TRAIL-based therapy.
Collapse
Affiliation(s)
- Marie D Ralff
- MD/PhD Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
10
|
Beyrath J, Chekkat N, Smulski CR, Lombardo CM, Lechner MC, Seguin C, Decossas M, Spanedda MV, Frisch B, Guichard G, Fournel S. Synthetic ligands of death receptor 5 display a cell-selective agonistic effect at different oligomerization levels. Oncotarget 2018; 7:64942-64956. [PMID: 27409341 PMCID: PMC5323128 DOI: 10.18632/oncotarget.10508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/11/2016] [Indexed: 01/28/2023] Open
Abstract
DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL (TNF related apoptosis-inducing ligand). Therapies based on soluble recombinant TRAIL or agonist antibodies directed against one of the receptors are currently under clinical trials. However, TRAIL-R positive tumor cells are frequently resistant to TRAIL induced apoptosis. The precise mechanisms of this resistance are still not entirely understood. We have previously reported on synthetic peptides that bind to DR5 (TRAILmim/DR5) and induce tumor cell apoptosis in vitro and in vivo. Here, we showed that while hexameric soluble TRAIL is able to efficiently kill the DR5 positive lymphoma Jurkat or the carcinoma HCT116, these cells are resistant to apoptosis induced by the divalent form of TRAILmim/DR5 and are poorly sensitive to apoptosis induced by an anti-DR5 agonist monoclonal antibody. This resistance can be restored by the cross-linking of anti-DR5 agonist antibody but not by the cross-linking of the divalent form of TRAILmim/DR5. Interestingly, the divalent form of TRAILmim/DR5 that induced apoptosis of DR5 positive BJAB cells, acts as an inhibitor of TRAIL-induced apoptosis on Jurkat and HCT116 cells. The rapid internalization of DR5 observed when treated with divalent form of TRAILmim/DR5 could explain the antagonist activity of the ligand on Jurkat and HCT116 cells but also highlights the independence of the mechanisms responsible for internalization and activation when triggering the DR5 apoptotic cascade.
Collapse
Affiliation(s)
- Julien Beyrath
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,Current address: Khondrion BV, Nijmegen 6525EX, The Netherlands
| | - Neila Chekkat
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,Current address: Faculté de Pharmacie, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Illkirch BP 67401, France
| | - Cristian R Smulski
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,Current address: University Medical Center Freiburg, Center for Chronic Immunodeficiency, Freiburg D-79110, Germany
| | - Caterina M Lombardo
- Institut Européen de Chimie et Biologie, UMR 5248, Institut de Chimie & Biologie des Membranes & des Nano-objets (CBMN), Univ. Bordeaux, Pessac 33607, France.,UMR 5248, CBMN, CNRS, Pessac 33600, France
| | - Marie-Charlotte Lechner
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,Institut Européen de Chimie et Biologie, UMR 5248, Institut de Chimie & Biologie des Membranes & des Nano-objets (CBMN), Univ. Bordeaux, Pessac 33607, France.,UMR 5248, CBMN, CNRS, Pessac 33600, France
| | - Cendrine Seguin
- Current address: Faculté de Pharmacie, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Illkirch BP 67401, France
| | - Marion Decossas
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,UMR 5248, CBMN, CNRS, Pessac 33600, France.,UMR 5248, CBMN, Univ. Bordeaux, Pessac 33600, France
| | - Maria Vittoria Spanedda
- Current address: Faculté de Pharmacie, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Illkirch BP 67401, France
| | - Benoît Frisch
- Current address: Faculté de Pharmacie, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Illkirch BP 67401, France
| | - Gilles Guichard
- Institut Européen de Chimie et Biologie, UMR 5248, Institut de Chimie & Biologie des Membranes & des Nano-objets (CBMN), Univ. Bordeaux, Pessac 33607, France.,UMR 5248, CBMN, CNRS, Pessac 33600, France
| | - Sylvie Fournel
- Institut de Biologie Moléculaire et Cellulaire, UMR 3572, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg 67084, France.,Current address: Faculté de Pharmacie, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Illkirch BP 67401, France
| |
Collapse
|
11
|
Prigozhina TB, Szafer F, Aronin A, Tzdaka K, Amsili S, Makdasi E, Shani N, Dranitzki Elhalel M. Fn14·TRAIL fusion protein is oligomerized by TWEAK into a superefficient TRAIL analog. Cancer Lett 2017; 400:99-109. [DOI: 10.1016/j.canlet.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
|
12
|
Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell 2017; 65:715-729.e5. [DOI: 10.1016/j.molcel.2017.01.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
|
13
|
Han JH, Moon AR, Chang JH, Bae J, Choi JM, Lee SH, Kim TH. Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif. BMB Rep 2017; 49:282-7. [PMID: 26674343 PMCID: PMC5070708 DOI: 10.5483/bmbrep.2016.49.5.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity. [BMB Reports 2016; 49(5): 282-287].
Collapse
Affiliation(s)
- Ji Hye Han
- Departments of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Ae Ran Moon
- Departments of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Jeong Hwan Chang
- Departments of Surgery, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jin Myung Choi
- Departments of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Sung Haeng Lee
- Departments of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Tae-Hyoung Kim
- Departments of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Korea
| |
Collapse
|
14
|
Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. Clin Transl Immunology 2017; 6:e124. [PMID: 28197335 PMCID: PMC5292560 DOI: 10.1038/cti.2016.83] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is a caspase-dependent programmed form of cell death, which is commonly believed to be an immunologically silent process, required for mammalian development and maintenance of cellular homoeostasis. In contrast, lytic forms of cell death, such as RIPK3- and MLKL-driven necroptosis, and caspase-1/11-dependent pyroptosis, are postulated to be inflammatory via the release of damage associated molecular patterns (DAMPs). Recently, the function of apoptotic caspase-8 has been extended to the negative regulation of necroptosis, the cleavage of inflammatory interleukin-1β (IL-1β) to its mature bioactive form, either directly or via the NLRP3 inflammasome, and the regulation of cytokine transcriptional responses. In view of these recent advances, human autoinflammatory diseases that are caused by mutations in cell death regulatory machinery are now associated with inappropriate inflammasome activation. In this review, we discuss the emerging crosstalk between cell death and innate immune cell inflammatory signalling, particularly focusing on novel non-apoptotic functions of caspase-8. We also highlight the growing number of autoinflammatory diseases that are associated with enhanced inflammasome function.
Collapse
Affiliation(s)
- Rebecca Feltham
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - James E Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Voltan R, Secchiero P, Casciano F, Milani D, Zauli G, Tisato V. Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity. Int J Biochem Cell Biol 2016; 81:364-374. [PMID: 27686849 DOI: 10.1016/j.biocel.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 02/06/2023]
Abstract
Redox regulation plays a key role in several physiopathological contexts and free radicals, from nitric oxide and superoxide anion up to other forms of reactive oxygen species (ROS), have been demonstrated to be involved in different biological and regulatory processes. The data reported in the current literature describe a link between ROS, inflammation and programmed cell death that is attracting interest as new pathways to be explored and targeted for therapeutic purposes. In this light, there is also growing attention to the involvement of this link in the activity of the TNF-related apoptosis inducing ligand (TRAIL). TRAIL is a member of the TNF ligands super family able to mediate multiple intracellular signals, with the potential to lead to a range of biological effects in different cell types. In particular, the hallmark of TRAIL is the ability to induce selective apoptosis in transformed cells leaving normal cells almost unaffected and this feature has already opened the door to several clinical studies for cancer treatment. Moreover, TRAIL plays a role in several physiological and pathological processes of both innate and adaptive immune systems and of the cardiovascular context, with a strong clinical potential. Nonetheless, several issues still need to be clarified about the signaling mediated by TRAIL to gain deeper insight into its therapeutic potential. In this light, the aim of this review is to summarize the main preclinical evidences about the interplay between TRAIL and redox signaling, with particular emphasis to the implications in vascular physiopathology and cancer.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| |
Collapse
|
16
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Fas and TRAIL 'death receptors' as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol 2015; 39:26-34. [PMID: 25655947 DOI: 10.1016/j.semcdb.2015.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Fas (CD95/APO-1) and TRAIL (CD253, TNFSF10, APO2) are members of a subset of the TNF receptor superfamily known as 'death receptors'. To date, the overwhelming majority of studies on Fas and TRAIL (TNF-related apoptosis-inducing ligand) have explored the role of these receptors as initiators of apoptosis. However, sporadic reports also suggest that engagement of the Fas and TRAIL receptors can lead to other outcomes such as cytokine and chemokine production, cell proliferation, cell migration and differentiation. Indeed, although transformed cells frequently express Fas and TRAIL, most do not undergo apoptosis upon engagement of these receptors and significant effort has been devoted toward exploring how to sensitize such cells to the pro-apoptotic effects of 'death receptor' stimulation. Moreover, the expression of Fas and TRAIL receptors is greatly elevated in many cancer types such as hepatocellular carcinoma, renal carcinoma and ovarian cancer, suggesting that such tumors benefit from the expression of these receptors. Furthermore, several studies have shown that tumor proliferation, progression and invasion can be impaired through blocking or downregulation of Fas expression, but the mechanistic basis for these effects is largely unknown. Thus, the characterization of Fas and TRAIL as 'death receptors' is a gross oversimplification, especially in the context of cancer. It is becoming increasingly clear that 'death receptor' engagement can lead to outcomes, other than apoptosis, that become subverted by certain tumors to their benefit. Here we will discuss death-independent outcomes of Fas and TRAIL signaling and their implications for cancer.
Collapse
|
18
|
Membrane-bound TRAIL supplements natural killer cell cytotoxicity against neuroblastoma cells. J Immunother 2013; 36:319-29. [PMID: 23719242 DOI: 10.1097/cji.0b013e31829b4493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroblastoma cells have been reported to be resistant to death induced by soluble, recombinant forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (CD253/TNFSF10) because of low or absent expression of caspase-8 and/or TRAIL-receptor 2 (TRAIL-R2/DR5/CD262/TNFRSF10b). However, their sensitivity to membrane-bound TRAIL on natural killer (NK) cells is not known. Comparing microarray gene expression and response to NK cell-mediated cytotoxicity, we observed a correlation between TRAIL-R2 expression and the sensitivity of 14 neuroblastoma cell lines to the cytotoxicity of NK cells activated with interleukin (IL)-2 plus IL-15. Even though most NK cytotoxicity was dependent upon perforin, the cytotoxicity was supplemented by TRAIL in 14 of 17 (82%) neuroblastoma cell lines as demonstrated using an anti-TRAIL neutralizing antibody. Similarly, a recently developed NK cell expansion system employing IL-2 plus lethally irradiated K562 feeder cells constitutively expressing membrane-bound IL-21 (K562 clone 9.mbIL21) resulted in activated NK cells derived from normal healthy donors and neuroblastoma patients that also utilized TRAIL to supplement cytotoxicity. Exogenous interferon-γ upregulated expression of caspase-8 in 3 of 4 neuroblastoma cell lines and increased the contribution of TRAIL to NK cytotoxicity against 2 of the 3 lines; however, relatively little inhibition of cytotoxicity was observed when activated NK cells were treated with an anti-interferon-γ neutralizing antibody. Constraining the binding of anti-TRAIL neutralizing antibody to membrane-bound TRAIL but not soluble TRAIL indicated that membrane-bound TRAIL alone was responsible for essentially all of the supplemental cytotoxicity. Together, these findings support a role for membrane-bound TRAIL in the cytotoxicity of NK cells against neuroblastoma cells.
Collapse
|
19
|
Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, Martin SJ. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells. Mol Cell 2013; 49:1034-48. [PMID: 23434371 DOI: 10.1016/j.molcel.2013.01.025] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022]
Abstract
Apoptosis is commonly thought to represent an immunologically silent or even anti-inflammatory mode of cell death, resulting in cell clearance in the absence of explicit activation of the immune system. However, here we show that Fas/CD95-induced apoptosis is associated with the production of an array of cytokines and chemokines, including IL-6, IL-8, CXCL1, MCP-1, and GMCSF. Fas-induced production of MCP-1 and IL-8 promoted chemotaxis of phagocytes toward apoptotic cells, suggesting that these factors serve as "find-me" signals in this context. We also show that RIPK1 and IAPs are required for optimal production of cytokines and chemokines in response to Fas receptor stimulation. Consequently, a synthetic IAP antagonist potently suppressed Fas-dependent expression of multiple proinflammatory mediators and inhibited Fas-induced chemotaxis. Thus, in addition to provoking apoptosis, Fas receptor stimulation can trigger the secretion of chemotactic factors and other immunologically active proteins that can influence immune responsiveness toward dying cells.
Collapse
Affiliation(s)
- Sean P Cullen
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Siegemund M, Pollak N, Seifert O, Wahl K, Hanak K, Vogel A, Nussler AK, Göttsch D, Münkel S, Bantel H, Kontermann RE, Pfizenmaier K. Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity. Cell Death Dis 2012; 3:e295. [PMID: 22495350 PMCID: PMC3358007 DOI: 10.1038/cddis.2012.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC(50) ∼2 × 10(-12) M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance.
Collapse
Affiliation(s)
- M Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - N Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - O Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - K Wahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - K Hanak
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - A Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - A K Nussler
- Department of Trauma Surgery, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - D Göttsch
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - S Münkel
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - H Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - R E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - K Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
21
|
|