1
|
Gelbach PE, Cetin H, Finley SD. Flux sampling in genome-scale metabolic modeling of microbial communities. BMC Bioinformatics 2024; 25:45. [PMID: 38287239 PMCID: PMC10826046 DOI: 10.1186/s12859-024-05655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Microbial communities play a crucial role in ecosystem function through metabolic interactions. Genome-scale modeling is a promising method to understand these interactions and identify strategies to optimize the community. Flux balance analysis (FBA) is most often used to predict the flux through all reactions in a genome-scale model; however, the fluxes predicted by FBA depend on a user-defined cellular objective. Flux sampling is an alternative to FBA, as it provides the range of fluxes possible within a microbial community. Furthermore, flux sampling can capture additional heterogeneity across a population, especially when cells exhibit sub-maximal growth rates. RESULTS In this study, we simulate the metabolism of microbial communities and compare the metabolic characteristics found with FBA and flux sampling. With sampling, we find significant differences in the predicted metabolism, including an increase in cooperative interactions and pathway-specific changes in predicted flux. CONCLUSIONS Our results suggest the importance of sampling-based approaches to evaluate metabolic interactions. Furthermore, we emphasize the utility of flux sampling in quantitatively studying interactions between cells and organisms.
Collapse
Affiliation(s)
- Patrick E Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Handan Cetin
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Gelbach PE, Finley SD. Flux Sampling in Genome-scale Metabolic Modeling of Microbial Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537368. [PMID: 37197028 PMCID: PMC10173371 DOI: 10.1101/2023.04.18.537368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial communities play a crucial role in ecosystem function through metabolic interactions. Genome-scale modeling is a promising method to understand these interactions. Flux balance analysis (FBA) is most often used to predict the flux through all reactions in a genome-scale model. However, the fluxes predicted by FBA depend on a user-defined cellular objective. Flux sampling is an alternative to FBA, as it provides the range of fluxes possible within a microbial community. Furthermore, flux sampling may capture additional heterogeneity across cells, especially when cells exhibit sub-maximal growth rates. In this study, we simulate the metabolism of microbial communities and compare the metabolic characteristics found with FBA and flux sampling. We find significant differences in the predicted metabolism with sampling, including increased cooperative interactions and pathway-specific changes in predicted flux. Our results suggest the importance of sampling-based and objective function-independent approaches to evaluate metabolic interactions and emphasize their utility in quantitatively studying interactions between cells and organisms.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Valverde JR, Gullón S, García-Herrero CA, Campoy I, Mellado RP. Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA. BMC Microbiol 2019; 19:233. [PMID: 31655540 PMCID: PMC6815373 DOI: 10.1186/s12866-019-1591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Streptomyces lividans is an appealing host for the production of proteins of biotechnological interest due to its relaxed exogenous DNA restriction system and its ability to secrete proteins directly to the medium through the major Sec or the minor Tat routes. Often, protein secretion displays non-uniform time-dependent patterns. Understanding the associated metabolic changes is a crucial step to engineer protein production. Dynamic Flux Balance Analysis (DFBA) allows the study of the interactions between a modelled organism and its environment over time. Existing methods allow the specification of initial model and environment conditions, but do not allow introducing arbitrary modifications in the course of the simulation. Living organisms, however, display unexpected adaptive metabolic behaviours in response to unpredictable changes in their environment. Engineering the secretion of products of biotechnological interest has systematically proven especially difficult to model using DFBA. Accurate time-dependent modelling of complex and/or arbitrary, adaptive metabolic processes demands an extended approach to DFBA. RESULTS In this work, we introduce Adaptive DFBA, a novel, versatile simulation approach that permits inclusion of changes in the organism or the environment at any time in the simulation, either arbitrary or interactively responsive to environmental changes. This approach extends traditional DFBA to allow steering arbitrarily complex simulations of metabolic dynamics. When applied to Sec- or Tat-dependent secretion of overproduced proteins in S. lividans, Adaptive DFBA can overcome the limitations of traditional DFBA to reproduce experimental data on plasmid-free, plasmid bearing and secretory protein overproducing S. lividans TK24, and can yield useful insights on the behaviour of systems with limited experimental knowledge such as agarase or amylase overproduction in S. lividans TK21. CONCLUSIONS Adaptive DFBA has allowed us to overcome DFBA limitations and to generate more accurate models of the metabolism during the overproduction of secretory proteins in S. lividans, improving our understanding of the underlying processes. Adaptive DFBA is versatile enough to permit dynamical metabolic simulations of arbitrarily complex biotechnological processes.
Collapse
Affiliation(s)
- Jósé R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain
| | - Clara A. García-Herrero
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Iván Campoy
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Rafael P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Zhang J, Martinez-Gomez K, Heinzle E, Wahl SA. Metabolic switches from quiescence to growth in synchronized Saccharomyces cerevisiae. Metabolomics 2019; 15:121. [PMID: 31468142 PMCID: PMC6715666 DOI: 10.1007/s11306-019-1584-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The switch from quiescence (G0) into G1 and cell cycle progression critically depends on specific nutrients and metabolic capabilities. Conversely, metabolic networks are regulated by enzyme-metabolite interaction and transcriptional regulation that lead to flux modifications to support cell growth. How cells process and integrate environmental information into coordinated responses is challenging to analyse and not yet described quantitatively. OBJECTIVES To quantitatively monitor the central carbon metabolism during G0 exit and the first 2 h after reentering the cell cycle from synchronized Saccharomyces cerevisiae. METHODS Dynamic tailored 13C metabolic flux analysis was used to observe the intracellular metabolite flux changes, and the metabolome and proteome were observed to identify regulatory mechanisms. RESULTS G0 cells responded immediately to an extracellular increase of glucose. The intracellular metabolic flux changed in time and specific events were observed. High fluxes into trehalose and glycogen synthesis were observed during the G0 exit. Both fluxes then decreased, reaching a minimum at t = 65 min. Here, storage degradation contributed significantly (i.e. 21%) to the glycolytic flux. In contrast to these changes, the glucose uptake rate remained constant after the G0 exit. The flux into the oxidative pentose phosphate pathway was highest (29-fold increase, 36.4% of the glucose uptake) at t = 65 min, while it was very low at other time points. The maximum flux seems to correlate with a late G1 state preparing for the S phase transition. In the G1/S phase (t = 87 min), anaplerotic reactions such as glyoxylate shunt increased. Protein results show that during this transition, proteins belonging to clusters related with ribosome biogenesis and assembly, and initiation transcription factors clusters were continuously synthetised. CONCLUSION The intracellular flux distribution changes dynamically and these major rearrangements highlight the coordinate reorganization of metabolic flux to meet requirements for growth during different cell state.
Collapse
Affiliation(s)
- Jinrui Zhang
- 0000 0001 2097 4740grid.5292.cDepartment of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Karla Martinez-Gomez
- 0000 0001 2167 7588grid.11749.3aBiochemical Engineering, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Elmar Heinzle
- 0000 0001 2167 7588grid.11749.3aBiochemical Engineering, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Sebastian Aljoscha Wahl
- 0000 0001 2097 4740grid.5292.cDepartment of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Çakır T, Kökrek E, Avşar G, Abdik E, Pir P. Next-Generation Genome-Scale Models Incorporating Multilevel 'Omics Data: From Yeast to Human. Methods Mol Biol 2019; 2049:347-363. [PMID: 31602621 DOI: 10.1007/978-1-4939-9736-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein-protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel 'omics data, from yeast to human.
Collapse
Affiliation(s)
- Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Emel Kökrek
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Gülben Avşar
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Pınar Pir
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
6
|
Serrano-Bermúdez LM, González Barrios AF, Montoya D. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One 2018; 13:e0209447. [PMID: 30571717 PMCID: PMC6301710 DOI: 10.1371/journal.pone.0209447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a PDO-producing Clostridium strain, which was validated at steady state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for batch and fed-batch cultures, which are the most often employed industrial processes. RESULTS We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA) approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B. First, we compared the predictions of the dynamic optimization approach (DOA), static optimization approach (SOA), and direct approach (DA). We found no differences between approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for validating dynamic predictions of growth, glycerol consumption, and PDO formation. These results indicated a 4.4% error in PDO prediction and therefore validated the previously proposed objective functions. We performed two global sensitivity analyses, finding that the kinetic input parameters of glycerol uptake flux had the most significant effect on PDO predictions. The other input parameters evaluated during global sensitivity analysis were biomass composition (precursors and macromolecules), death constants, and the kinetic parameters of acetic acid secretion flux. These last input parameters, all obtained from other Clostridium butyricum cultures, were used to develop a population balance model (PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to 66 g/L, almost three times the PDO predicted in the best batch culture. CONCLUSIONS We developed and validated a dynamic approach to predict PDO production using the iCbu641 GSM model and the previously proposed objective functions. This validated approach was used to propose a population model and then an increment in predictions of PDO production through fed-batch cultures. Therefore, this dynamic model could predict different scenarios, including its integration into downstream processes to predict technical-economic feasibilities and reducing the time and costs associated with experimentation.
Collapse
Affiliation(s)
- Luis Miguel Serrano-Bermúdez
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
- Grupo Cundinamarca Agroambiental, Departamento de Ingeniería Ambiental, Universidad de Cundinamarca, Facatativá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá D.C., Colombia
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
| |
Collapse
|
7
|
Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability. Appl Microbiol Biotechnol 2018; 102:2101-2116. [DOI: 10.1007/s00253-017-8732-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
8
|
Fernandez-de-Cossio-Diaz J, Leon K, Mulet R. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures. PLoS Comput Biol 2017; 13:e1005835. [PMID: 29131817 PMCID: PMC5703580 DOI: 10.1371/journal.pcbi.1005835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/27/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Collapse
Affiliation(s)
- Jorge Fernandez-de-Cossio-Diaz
- Systems Biology Department, Center of Molecular Immunlogy, Havana, Cuba
- Group of Complex Systems and Statistical Physics. Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| | - Kalet Leon
- Systems Biology Department, Center of Molecular Immunlogy, Havana, Cuba
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics. Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| |
Collapse
|
9
|
Influence of agricultural activities in the structure and metabolic functionality of paramo soil samples in Colombia studied using a metagenomics analysis in dynamic state. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Castillo S, Barth D, Arvas M, Pakula TM, Pitkänen E, Blomberg P, Seppanen-Laakso T, Nygren H, Sivasiddarthan D, Penttilä M, Oja M. Whole-genome metabolic model of Trichoderma reesei built by comparative reconstruction. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:252. [PMID: 27895706 PMCID: PMC5117618 DOI: 10.1186/s13068-016-0665-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/10/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Trichoderma reesei is one of the main sources of biomass-hydrolyzing enzymes for the biotechnology industry. There is a need for improving its enzyme production efficiency. The use of metabolic modeling for the simulation and prediction of this organism's metabolism is potentially a valuable tool for improving its capabilities. An accurate metabolic model is needed to perform metabolic modeling analysis. RESULTS A whole-genome metabolic model of T. reesei has been reconstructed together with metabolic models of 55 related species using the metabolic model reconstruction algorithm CoReCo. The previously published CoReCo method has been improved to obtain better quality models. The main improvements are the creation of a unified database of reactions and compounds and the use of reaction directions as constraints in the gap-filling step of the algorithm. In addition, the biomass composition of T. reesei has been measured experimentally to build and include a specific biomass equation in the model. CONCLUSIONS The improvements presented in this work on the CoReCo pipeline for metabolic model reconstruction resulted in higher-quality metabolic models compared with previous versions. A metabolic model of T. reesei has been created and is publicly available in the BIOMODELS database. The model contains a biomass equation, reaction boundaries and uptake/export reactions which make it ready for simulation. To validate the model, we dem1onstrate that the model is able to predict biomass production accurately and no stoichiometrically infeasible yields are detected. The new T. reesei model is ready to be used for simulations of protein production processes.
Collapse
Affiliation(s)
- Sandra Castillo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Tiina M. Pakula
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Esa Pitkänen
- Department of Computer Science, University of Helsinki, P.O. 68 (Gustaf Hällströmin katu 2b), 00014 Helsinki, Finland
| | - Peter Blomberg
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | | | - Heli Nygren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | | | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 Espoo, Finland
| |
Collapse
|
11
|
Tummler K, Kühn C, Klipp E. Dynamic metabolic models in context: biomass backtracking. Integr Biol (Camb) 2016; 7:940-51. [PMID: 26189715 DOI: 10.1039/c5ib00050e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mathematical modeling has proven to be a powerful tool to understand and predict functional and regulatory properties of metabolic processes. High accuracy dynamic modeling of individual pathways is thereby opposed by simplified but genome scale constraint based approaches. A method that links these two powerful techniques would greatly enhance predictive power but is so far lacking. We present biomass backtracking, a workflow that integrates the cellular context in existing dynamic metabolic models via stoichiometrically exact drain reactions based on a genome scale metabolic model. With comprehensive examples, for different species and environmental contexts, we show the importance and scope of applications and highlight the improvement compared to common boundary formulations in existing metabolic models. Our method allows for the contextualization of dynamic metabolic models based on all available information. We anticipate this to greatly increase their accuracy and predictive power for basic research and also for drug development and industrial applications.
Collapse
Affiliation(s)
- Katja Tummler
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Germany.
| | | | | |
Collapse
|
12
|
Sánchez BJ, Nielsen J. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol (Camb) 2016; 7:846-58. [PMID: 26079294 DOI: 10.1039/c5ib00083a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are currently used for metabolic engineering and elucidating biological interactions. Here we review the history of yeast's GEMs, focusing on recent developments. We study how these models are typically evaluated, using both descriptive and predictive metrics. Additionally, we analyze the different ways in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted.
Collapse
Affiliation(s)
- Benjamín J Sánchez
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden.
| | | |
Collapse
|
13
|
Abstract
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated.
Collapse
Affiliation(s)
- Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.
| |
Collapse
|
14
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
15
|
Calderwood A, Morris RJ, Kopriva S. Predictive sulfur metabolism - a field in flux. FRONTIERS IN PLANT SCIENCE 2014; 5:646. [PMID: 25477892 PMCID: PMC4235266 DOI: 10.3389/fpls.2014.00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/02/2014] [Indexed: 05/08/2023]
Abstract
The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired metabolite. Such approaches have proven their value in bacterial systems, however, the paucity of success stories to date in plants, suggests that challenges remain. Here, we review the most commonly used methods for understanding metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues with both experimental and theoretical approaches, as well as presenting recent methods for integrating different modeling strategies, and progress toward an understanding of flux at the whole plant level.
Collapse
Affiliation(s)
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes CentreNorwich, UK
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne BiocenterCologne, Germany
| |
Collapse
|
16
|
Sánchez BJ, Pérez-Correa JR, Agosin E. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Metab Eng 2014; 25:159-73. [DOI: 10.1016/j.ymben.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
|
17
|
Lindfors E, Jouhten P, Oja M, Rintala E, Orešič M, Penttilä M. Integration of transcription and flux data reveals molecular paths associated with differences in oxygen-dependent phenotypes of Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:16. [PMID: 24528924 PMCID: PMC3930817 DOI: 10.1186/1752-0509-8-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/07/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Saccharomyces cerevisiae is able to adapt to a wide range of external oxygen conditions. Previously, oxygen-dependent phenotypes have been studied individually at the transcriptional, metabolite, and flux level. However, the regulation of cell phenotype occurs across the different levels of cell function. Integrative analysis of data from multiple levels of cell function in the context of a network of several known biochemical interaction types could enable identification of active regulatory paths not limited to a single level of cell function. RESULTS The graph theoretical method called Enriched Molecular Path detection (EMPath) was extended to enable integrative utilization of transcription and flux data. The utility of the method was demonstrated by detecting paths associated with phenotype differences of S. cerevisiae under three different conditions of oxygen provision: 20.9%, 2.8% and 0.5%. The detection of molecular paths was performed in an integrated genome-scale metabolic and protein-protein interaction network. CONCLUSIONS The molecular paths associated with the phenotype differences of S. cerevisiae under conditions of different oxygen provisions revealed paths of molecular interactions that could potentially mediate information transfer between processes that respond to the particular oxygen availabilities.
Collapse
Affiliation(s)
- Erno Lindfors
- VTT Technical Research Centre of Finland, Espoo, Finland
- Currently at: LifeGlimmer GmbH, Markelstrasse 38, D–12136 Berlin, Germany
- Currently at: Chemistry Building, Building 316, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Paula Jouhten
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eija Rintala
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
18
|
Effect of initial headspace oxygen level on growth and volatile metabolite production by the specific spoilage microorganisms of fresh-cut pineapple. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Antoniewicz MR. Dynamic metabolic flux analysis—tools for probing transient states of metabolic networks. Curr Opin Biotechnol 2013; 24:973-8. [DOI: 10.1016/j.copbio.2013.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/16/2022]
|
20
|
Winter G, Krömer JO. Fluxomics - connecting ‘omics analysis and phenotypes. Environ Microbiol 2013; 15:1901-16. [DOI: 10.1111/1462-2920.12064] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Gal Winter
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| | - Jens O. Krömer
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| |
Collapse
|
21
|
Jouhten P. Metabolic modelling in the development of cell factories by synthetic biology. Comput Struct Biotechnol J 2012; 3:e201210009. [PMID: 24688669 PMCID: PMC3962133 DOI: 10.5936/csbj.201210009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.
Collapse
Affiliation(s)
- Paula Jouhten
- VTT Technical Research Centre of Finland, Tietotie 2, 02044 VTT, Espoo, Finland
| |
Collapse
|