1
|
Koshko L, Scofield S, Mor G, Sadagurski M. Prenatal Pollutant Exposures and Hypothalamic Development: Early Life Disruption of Metabolic Programming. Front Endocrinol (Lausanne) 2022; 13:938094. [PMID: 35909533 PMCID: PMC9327615 DOI: 10.3389/fendo.2022.938094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental contaminants in ambient air pollution pose a serious risk to long-term metabolic health. Strong evidence shows that prenatal exposure to pollutants can significantly increase the risk of Type II Diabetes (T2DM) in children and all ethnicities, even without the prevalence of obesity. The central nervous system (CNS) is critical in regulating whole-body metabolism. Within the CNS, the hypothalamus lies at the intersection of the neuroendocrine and autonomic systems and is primarily responsible for the regulation of energy homeostasis and satiety signals. The hypothalamus is particularly sensitive to insults during early neurodevelopmental periods and may be susceptible to alterations in the formation of neural metabolic circuitry. Although the precise molecular mechanism is not yet defined, alterations in hypothalamic developmental circuits may represent a leading cause of impaired metabolic programming. In this review, we present the current knowledge on the links between prenatal pollutant exposure and the hypothalamic programming of metabolism.
Collapse
Affiliation(s)
- Lisa Koshko
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney Scofield
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology School of Medicine, Wayne State University, Detroit, MI, United States
| | - Marianna Sadagurski
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Idris AO, Alabi QK, Ologe MF, Oluogun WA, Akanbi MHJ, Iwalewa EO. Evaluation of acrylamide exposure in pregnant Wistar rats as a risk of developing renal disease in their litters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39680-39691. [PMID: 33763836 DOI: 10.1007/s11356-021-13580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
This study was designed at evaluating the acrylamide (ACR) exposure in pregnant Wistar rats as a risk of developing renal disease in their litters. Four groups of pregnant female rats were used. Group 1 control animals were given 2 ml/kg/day of distilled water. Groups 2, 3, and 4 animals were given oral gavage doses of 2, 5, and 10 mg/kg/day of ACR respectively immediately pregnancy was confirmed. Mother rats were sacrificed 10 weeks after delivery and litters were sacrificed at 13 weeks. Proteinuria was observed in ACR-treated mother rats and their litters. Serum electrolytes, urea, and creatinine values observed in the treated group were deranged for both the mothers and litters respectively. Disruption of nephrogenesis was observed in the litters of ACR-treated mother compared to the control. The results of the effect of ACR on lipid profile indicated a significant elevation in the LDL, cholesterol, and triglyceride compared to the control. There was significant reduction in the SOD, catalase, GSH, and significant elevation in the C-reactive protein and malondialdehyde. Conclusively, exposure to acrylamide during pregnancy is a risk factor for the development of renal disease in the mother rats and their litters.
Collapse
Affiliation(s)
- Adeoye Oyewole Idris
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, P.M.B 250, Ede, Osun State, Nigeria.
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria.
| | - Quadri Kunle Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, P.M.B 250, Ede, Osun State, Nigeria.
| | - Mary Funmilayo Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
| | - Waheed Akanni Oluogun
- Department of Morbid Anatomy and Histopathology, Ladoke Akintola University of Technology Teaching Hospital, Osogbo, Osun State, Nigeria
| | - Marijke Haas Jimoh Akanbi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Ezekiel Olugbenga Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
4
|
Transplacental exposure to carcinogens and risks to children: evidence from biomarker studies and the utility of omic profiling. Arch Toxicol 2019; 93:833-857. [PMID: 30859261 DOI: 10.1007/s00204-019-02428-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The factors underlying the increasing rates and the geographic variation of childhood cancers are largely unknown. Epidemiological studies provide limited evidence for a possible role in the etiology of certain types of childhood cancer of the exposure of pregnant women to environmental carcinogens (e.g., tobacco smoke and pesticides); however, such evidence is inadequate to allow definitive conclusions. Complementary evidence can be obtained from biomarker-based population studies. Such studies have demonstrated that, following exposure of pregnant mothers, most environmental carcinogens reach the fetus and, in many cases, induce therein genotoxic damage which in adults is known to be associated with increased cancer risk, implying that environmental carcinogens may contribute to the etiology of childhood cancer. During recent years, intermediate disease biomarkers, obtained via omic profiling, have provided additional insights into the impact of transplacental exposures on fetal tissues which, in some cases, are also compatible with a precarcinogenic role of certain in utero exposures. Here we review the epidemiological and biomarker evidence and discuss how further research, especially utilizing high-density profiling, may allow a better evaluation of the links between in utero environmental exposures and cancer in children.
Collapse
|
5
|
Vähäkangas K, Loikkanen J, Sahlman H, Karttunen V, Repo J, Sieppi E, Kummu M, Huuskonen P, Myöhänen K, Storvik M, Pasanen M, Myllynen P, Pelkonen O. Biomarkers of Toxicity in Human Placenta. BIOMARKERS IN TOXICOLOGY 2019:303-339. [DOI: 10.1016/b978-0-12-814655-2.00018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Brownbill P, Chernyavsky I, Bottalico B, Desoye G, Hansson S, Kenna G, Knudsen LE, Markert UR, Powles-Glover N, Schneider H, Leach L. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 2016; 64:191-202. [PMID: 27327413 DOI: 10.1016/j.reprotox.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.
Collapse
Affiliation(s)
- Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Igor Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.
| | - Barbara Bottalico
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Stefan Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | | | - Lisbeth E Knudsen
- Department of Public Health, Faculty Of Health Sciences, University of Copenhagen, Denmark.
| | - Udo R Markert
- Placenta-Labor Laboratory, Department of Obstetrics, Friedrich Schiller University, D-07740, Jena, Germany.
| | - Nicola Powles-Glover
- Reproductive, Development and Paediatric Centre of Excellence, AstraZeneca, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK.
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland.
| | - Lopa Leach
- Molecular Cell Biology & Development, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
| |
Collapse
|