1
|
Patel NR, Setya K, Pradhan S, Lu M, Demer LL, Tintut Y. Microarchitectural Changes of Cardiovascular Calcification in Response to In Vivo Interventions Using Deep-Learning Segmentation and Computed Tomography Radiomics. Arterioscler Thromb Vasc Biol 2022; 42:e228-e241. [PMID: 35708025 PMCID: PMC9339530 DOI: 10.1161/atvbaha.122.317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coronary calcification associates closely with cardiovascular risk, but its progress is accelerated in response to some interventions widely used to reduce risk. This paradox suggests that qualitative, not just quantitative, changes in calcification may affect plaque stability. To determine if the microarchitecture of calcification varies with aging, Western diet, statin therapy, and high intensity, progressive exercise, we assessed changes in a priori selected computed tomography radiomic features (intensity, size, shape, and texture). METHODS Longitudinal computed tomography scans of mice (Apoe-/-) exposed to each of these conditions were autosegmented by deep learning segmentation, and radiomic features of the largest deposits were analyzed. RESULTS Over 20 weeks of aging, intensity and most size parameters increased, but surface-area-to-volume ratio (a measure of porosity) decreased, suggesting stabilization. However, texture features (coarseness, cluster tendency, and nonuniformity) increased, suggesting heterogeneity and likely destabilization. Shape parameters showed no significant changes, except sphericity, which showed a decrease. The Western diet had significant effects on radiomic features related to size and texture, but not intensity or shape. In mice undergoing either pravastatin treatment or exercise, the selected radiomic features of their computed tomography scans were not significantly different from those of their respective controls. Interestingly, the total number of calcific deposits increased significantly less in the 2 intervention groups compared with the respective controls, suggesting more coalescence and/or fewer de novo deposits. CONCLUSIONS Thus, aging and standard interventions alter the microarchitectural features of vascular calcium deposits in ways that may alter plaque biomechanical stability.
Collapse
Affiliation(s)
- Nikhil Rajesh Patel
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Kulveer Setya
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Stuti Pradhan
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Mimi Lu
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Bioengineering, University of California, Los Angeles. (L.L.D.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,Department of Orthopaedic Surgery, University of California, Los Angeles. (Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| |
Collapse
|
2
|
Poulsen CB, Damkjær M, Hald BO, Wang T, Holstein-Rathlou NH, Jacobsen JCB. Vascular flow reserve as a link between long-term blood pressure level and physical performance capacity in mammals. Physiol Rep 2016; 4:4/11/e12813. [PMID: 27255360 PMCID: PMC4908491 DOI: 10.14814/phy2.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Mean arterial pressure (MAP) is surprisingly similar across different species of mammals, and it is, in general, not known which factors determine the arterial pressure level. Mammals often have a pronounced capacity for sustained physical performance. This capacity depends on the vasculature having a flow reserve that comes into play as tissue metabolism increases. We hypothesize that microvascular properties allowing for a large vascular flow reserve is linked to the level of the arterial pressure.To study the interaction between network properties and network inlet pressure, we developed a generic and parsimonious computational model of a bifurcating microvascular network where diameter and growth of each vessel evolves in response to changes in biomechanical stresses. During a simulation, the network develops well-defined arterial and venous vessel characteristics. A change in endothelial function producing a high precapillary resistance and thus a high vascular flow reserve is associated with an increase in network inlet pressure. Assuming that network properties are independent of body mass, and that inlet pressure of the microvascular network is a proxy for arterial pressure, the study provides a conceptual explanation of why high performing animals tend to have a high MAP.
Collapse
Affiliation(s)
- Christian B Poulsen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense C, Denmark
| | - Bjørn O Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
3
|
Rodríguez AI, Csányi G, Ranayhossaini DJ, Feck DM, Blose KJ, Assatourian L, Vorp DA, Pagano PJ. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2015; 35:430-8. [PMID: 25550204 PMCID: PMC4409426 DOI: 10.1161/atvbaha.114.304936] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Blood vessel hemodynamics have profound influences on function and structure of vascular cells. One of the main mechanical forces influencing vascular smooth muscle cells (VSMC) is cyclic stretch (CS). Increased CS stimulates reactive oxygen species (ROS) production in VSMC, leading to their dedifferentiation, yet the mechanisms involved are poorly understood. This study was designed to test the hypothesis that pathological CS stimulates NADPH oxidase isoform 1 (Nox1)-derived ROS via MEF2B, leading to VSMC dysfunction via a switch from a contractile to a synthetic phenotype. APPROACH AND RESULTS Using a newly developed isoform-specific Nox1 inhibitor and gene silencing technology, we demonstrate that a novel pathway, including MEF2B-Nox1-ROS, is upregulated under pathological stretch conditions, and this pathway promotes a VSMC phenotypic switch from a contractile to a synthetic phenotype. We observed that CS (10% at 1 Hz) mimicking systemic hypertension in humans increased Nox1 mRNA, protein levels, and enzymatic activity in a time-dependent manner, and this upregulation was mediated by MEF2B. Furthermore, we show that stretch-induced Nox1-derived ROS upregulated a specific marker for synthetic phenotype (osteopontin), whereas it downregulated classical markers for contractile phenotype (calponin1 and smoothelin B). In addition, our data demonstrated that stretch-induced Nox1 activation decreases actin fiber density and augments matrix metalloproteinase 9 activity, VSMC migration, and vectorial alignment. CONCLUSIONS These results suggest that CS initiates a signal through MEF2B that potentiates Nox1-mediated ROS production and causes VSMC to switch to a synthetic phenotype. The data also characterize a new Nox1 inhibitor as a potential therapy for treatment of vascular dysfunction in hypertension.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Calcium-Binding Proteins/metabolism
- Cell Movement
- Cells, Cultured
- Cytoskeletal Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- MEF2 Transcription Factors/genetics
- MEF2 Transcription Factors/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mechanotransduction, Cellular/drug effects
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- Osteopontin/metabolism
- Phenotype
- Pressoreceptors/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Time Factors
- Transfection
- Vascular Remodeling/drug effects
- Calponins
Collapse
Affiliation(s)
- Andrés I Rodríguez
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Gábor Csányi
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Daniel J Ranayhossaini
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Douglas M Feck
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Kory J Blose
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Lillian Assatourian
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - David A Vorp
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R)
| | - Patrick J Pagano
- From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R).
| |
Collapse
|
4
|
Karaca Ü, Schram MT, Houben AJHM, Muris DMJ, Stehouwer CDA. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res Clin Pract 2014; 103:382-7. [PMID: 24438874 DOI: 10.1016/j.diabres.2013.12.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/07/2023]
Abstract
Impaired microvascular dilatation from any cause and impaired insulin-mediated capillary recruitment in particular result in suboptimal delivery of glucose and insulin to skeletal muscle, and subsequently impairment of glucose disposal (insulin resistance). In addition, microvascular dysfunction, through functional and/or structural arteriolar and capillary drop-out, and arteriolar constriction, increases peripheral resistance and thus blood pressure. Microvascular dysfunction may thus constitute a pathway that links insulin resistance and hypertension. Overweight and obesity may be an important cause of microvascular dysfunction. Mechanisms linking overweight and obesity to microvascular dysfunction include changes in the secretion of adipokines leading to increased levels of free fatty acids and inflammatory mediators, and decreased levels of adiponectin all of which may impair endothelial insulin signaling. Microvascular dysfunction may thus constitute a new treatment target in the prevention of type 2 diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Ü Karaca
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M T Schram
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - A J H M Houben
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.
| | - D M J Muris
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - C D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
5
|
Ramasubramanian A. On the Role of Autonomous Control in Organ Development. JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL 2013; 135:0645031-645036. [PMID: 24895463 PMCID: PMC4023410 DOI: 10.1115/1.4024996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 07/05/2013] [Indexed: 06/03/2023]
Abstract
Developmental biology ("development" for short) deals with how the mature animal or plant results from a single fertilized cell. This paper is concerned with one aspect of development, morphogenesis-the formation of complex shapes from simpler ones. In particular, this paper focuses on organ development and illustrates the central role that mechanical feedback plays in effecting the final shape of various organs. The first aim of this paper is to illustrate how self-governing autonomous control systems can lead to the development of organs such as the heart. Although feedback plays a key role in these processes, the field is largely unexplored by controls engineers; hence, the second aim of this paper is to introduce mechanical feedback during development to controls engineers and suggest avenues for future research.
Collapse
Affiliation(s)
- Ashok Ramasubramanian
- Assistant Professor Department of Mechanical Engineering, Union College, Schenectady, NY 12309 e-mail:
| |
Collapse
|
6
|
Okkels F, Jacobsen JCB. Dynamic adaption of vascular morphology. Front Physiol 2012; 3:390. [PMID: 23060814 PMCID: PMC3462325 DOI: 10.3389/fphys.2012.00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system.
Collapse
Affiliation(s)
- Fridolin Okkels
- Department of Micro- and Nanotechnology, Technical University of Denmark Lyngby, Denmark
| | | |
Collapse
|
7
|
Simonsen U, Aalkjaer C. Small artery structure and function: a dual interaction with many players. Basic Clin Pharmacol Toxicol 2011; 110:2-4. [PMID: 22151731 DOI: 10.1111/j.1742-7843.2011.00837.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|