1
|
Olivencia MA, Climent B, Barreira B, Morales-Cano D, Sánchez A, Fernández A, García-Gómez B, Romero-Otero J, Rodríguez C, Moreno L, Prieto D, Larriba MJ, Cogolludo A, Angulo J, Perez-Vizcaino F. Vitamin D deficiency induces erectile dysfunction: Role of superoxide and Slpi. Br J Pharmacol 2025. [PMID: 40222751 DOI: 10.1111/bph.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Epidemiological studies suggest a relationship between vitamin D deficiency and erectile dysfunction (ED). We hypothesized that vitamin D deficiency or vitamin D receptor (VDR) knockout causes ED and analysed the underlying molecular mechanisms. EXPERIMENTAL APPROACH Erectile function was assessed in vivo in anaesthetized male mice or rats by evaluating intracavernosal pressure (ICP) and in vitro in male Vdr-/- mice, and rat or human isolated corpora cavernosa (CCs) mounted in a myograph. Bulk RNA-sequencing (RNA-seq) transcriptomic analysis was performed in rat CCs. Vitamin D deficiency was induced in rats fed a vitamin D-free diet for 5 months. KEY RESULTS CCs from human donors with low plasma vitamin D exhibited reduced nitric oxide (NO)-dependent erectile function. This ED was also reproduced in vitamin D-deficient rats and VDR knockout mice, in vivo and ex vivo, and is associated with penile fibrosis and reduced response to the phosphodiesterase 5 inhibitor (PDE5i) sildenafil. CCs from deficient rats show increased superoxide levels, and their impaired erectile function was restored by superoxide scavengers. Transcriptomic analysis, real-time polymerase chain reaction (RT-PCR) and Western blot showed down-regulated secretory leukocyte protease inhibitor (Slpi). Moreover, recombinant SLPI prevented superoxide-induced ED, while Slpi gene silencing led to reduced erectile function in a superoxide-dependent manner. CONCLUSION AND IMPLICATIONS Vitamin D deficiency or VDR knockout reduces erectile function. We suggest that this effect is mediated by increased superoxide levels and down-regulation of SLPI. Vitamin D deficiency might be an aetiological factor for vascular ED and for the therapeutic failure of PDE5i.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Belén Climent
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Physiology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Sánchez
- Department of Physiology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Argentina Fernández
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Borja García-Gómez
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Javier Romero-Otero
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Claudia Rodríguez
- Department of Physiology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
2
|
Xiang J, Wang C, Yu X, He J. Study on the mechanism of Jin Gui Shen Qi Pill in the treatment of erectile dysfunction based on bioinformatics analysis. Medicine (Baltimore) 2022; 101:e31668. [PMID: 36401440 PMCID: PMC9678517 DOI: 10.1097/md.0000000000031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Erectile dysfunction (ED) is a male disease, which is easy to cause disharmony in sexual life. However, at present, there are few drugs with small side effects in clinic. Jin Gui Shen Qi Pill (JGSQP) is a traditional Chinese medicine compound with obvious clinical effect in treating ED. Therefore, it is imperative to explore clinical drugs based on inhibiting the pathological characteristics of ED. First, the active ingredients and action targets in JGSQP were screened by applying Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SWISS Target Prediction. Further, a systematic pharmacological analysis platform for traditional Chinese medicine, and the ED targets were screened by applying Gene Cards and Online Mendelian Inheritance in Man databases to construct drug active ingredient-target-disease mapping, followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis. Finally, Molecular docking and molecular dynamics simulations were used to screen the active ingredients of JGSQP acting on PDE-5, and analyze the ligand-receptor interaction relationship and binding free energy. The results showed that there were 212 potential targets of JGSQP for ED disease, and GO analysis revealed that the main pathways were positive regulation of DNA-binding transcription factor activity, regulation of vascular diameter, and negative regulation of vascular diameter, etc. KEGG analysis revealed that the main pathways were HIF-1 signaling pathway, prolactin signaling pathway, fluid shear stress, and atherosclerosis, etc. PPI network analysis revealed that the core targets TGFB1 and EGFR have important roles. Molecular docking and molecular dynamics simulations showed that the main components acting on PDE-5 were MOL000546, MOL011169, MOL000279, MOL000273 and Sildenafil. MOL000546 was able to bind stably to PDE-5. The multi-component, multi-target, and multi-pathway action characteristics of JGSQP were confirmed by network pharmacology, which predicted the possible mechanism of action of JGSQP in the treatment of ED and provided a theoretical reference for further experimental validation.
Collapse
Affiliation(s)
- Jingjing Xiang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chaoyang Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaoming Yu
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jing He
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
- * Correspondence: Jing He, Hubei Provincial Hospital of Traditional Chinese Medicine, No. 4 huayuanshan, Wuchang District, Wuhan City, Hubei Province, China (e-mail: )
| |
Collapse
|
3
|
Chlorpromazine and Promethazine (C+P) Reduce Brain Injury after Ischemic Stroke through the PKC-δ/NOX/MnSOD Pathway. Mediators Inflamm 2022; 2022:6886752. [PMID: 35873710 PMCID: PMC9307415 DOI: 10.1155/2022/6886752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.
Collapse
|
4
|
Trigonella foenum-graecum L. and Psoralea corylifolia L. Improve Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats through Suppression of Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4187359. [PMID: 35707467 PMCID: PMC9192318 DOI: 10.1155/2022/4187359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Background Diabetes mellitus-induced erectile dysfunction (DMED) is one of the most common complications of diabetes and is mainly attributed to oxidative stress. Hu-Lu-Ba-Wan (HLBW) is a classic Chinese formulation consisting of Trigonella foenum-graecum L. (TFG) and Psoralea corylifolia L. (PC). HLBW has been used not only for the treatment of diabetes but also for the treatment of erectile dysfunction in clinics. This study aimed to explore the efficacy and underlying mechanism of HLBW in ameliorating erectile function in streptozotocin-induced diabetic rats. Methods The diabetic model was established by tail vein injection of streptozotocin (26 mg/kg), and then DMED rats screened by the apomorphine test were randomly divided into two groups: the model group and the HLBW group. The rats in the HLBW group were administered HLBW granules daily for 12 weeks. Fasting blood glucose and fasting insulin were tested by a commercial kit. Intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured by cavernous nerve electrostimulation before the rats were killed. Erectile function was evaluated with ICP/MAP. The markers of oxidative stress in the corpus cavernosum (CC) were assayed by assay kits. Apoptosis in cavernosal tissue was detected by Western blotting (WB). The expression levels of vascular endothelial marker (vWF), α-smooth muscle actin (α-SMA), endothelial nitric oxide synthase (eNOS), and NADPH oxidase subunit P47phox were determined by WB and PCR. Furthermore, the structure of the CC was further confirmed by Masson's trichrome staining. Results The results showed that HLBW significantly reduced blood glucose and increased insulin sensitivity. HLBW reduced oxidative stress and apoptosis. In addition, we observed that the expression levels of vWF, α-SMA, and eNOS as well as the ratio of smooth muscle to collagen increased in the HLBW group. Conclusions Our results demonstrated that HLBW could reduce oxidative stress damage in CC to improve diabetes mellitus-induced erectile dysfunction in rats by inhibiting NADPH oxidase.
Collapse
|
5
|
Oliveira AL, Medeiros ML, de Oliveira MG, Teixeira CJ, Mónica FZ, Antunes E. Enhanced RAGE Expression and Excess Reactive-Oxygen Species Production Mediates Rho Kinase-Dependent Detrusor Overactivity After Methylglyoxal Exposure. Front Physiol 2022; 13:860342. [PMID: 35418871 PMCID: PMC8996136 DOI: 10.3389/fphys.2022.860342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound implicated in diabetes-associated diseases. In vascular tissues, MGO induces the formation of advanced glycation end products (AGEs) that bounds its receptor RAGE, initiating the downstream tissue injury. Outside the cardiovascular system, MGO intake produces mouse voiding dysfunction and bladder overactivity. We have sought that MGO-induced bladder overactivity is due to activation of AGE-RAGE-reactive-oxygen species (ROS) signaling cascade, leading to Rho kinase activation. Therefore, female mice received 0.5% MGO orally for 12 weeks, after which in vitro bladder contractions were evaluated in the presence or not of superoxide dismutase (PEG-SOD) or the Rho kinase inhibitor Y27632. Treatment with MGO significantly elevated the serum levels of MGO and fluorescent AGEs, as well as the RAGE immunostaining in the urothelium, detrusor, and vascular endothelium. RAGE mRNA expression in the bladder was also higher in the MGO group. Methylglyoxal significantly increased the ROS production in both urothelium and detrusor smooth muscle, with the increases in detrusor markedly higher than urothelium. The bladder activity of superoxide dismutase (SOD) was significantly reduced in the MGO group. Gene expressions of L-type Ca2+ channels, RhoA, ROCK-1, and ROCK-2 in bladder tissues were significantly elevated in the MGO group. Increased bladder contractions to electrical-field stimulation, carbachol α,β-methylene ATP, and extracellular Ca2+ were observed after MGO exposure, which was significantly reduced by prior incubation with either PEG-SOD or Y27632. Overall, our data indicate serum MGO accumulation elevates the AGEs levels and activates the RAGE-ROS signaling leading to Rho kinase-induced muscle sensitization, ultimately leading to detrusor overactivity.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
La Favor JD, Pierre CJ, Bivalacqua TJ, Burnett AL. Rapamycin Suppresses Penile NADPH Oxidase Activity to Preserve Erectile Function in Mice Fed a Western Diet. Biomedicines 2021; 10:biomedicines10010068. [PMID: 35052748 PMCID: PMC8773370 DOI: 10.3390/biomedicines10010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.
Collapse
Affiliation(s)
- Justin D. La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3149
| | - Clifford J. Pierre
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Trinity J. Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| | - Arthur L. Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| |
Collapse
|
7
|
Zhou B, Chen Y, Yuan H, Wang T, Feng J, Li M, Liu J. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021; 18:1970-1983. [PMID: 34649814 DOI: 10.1016/j.jsxm.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous studies have shown that oxidative stress contributes to hyperglycemia-induced erectile dysfunction. A preferential direct inhibitor of NOX1 and NOX4, GKT-137831, exhibited a strong anti‑oxidative role via blockade of reactive oxygen species (ROS) generation in endothelial cells, but whether GKT-137831 could improve erectile function was not clear. AIM Our study was designed to investigate the effect of NOX1/4 inhibition on improving diabetic erectile dysfunction (ED) in rats. METHODS We used streptozotocin to induce type 1 diabetes mellitus (DM) in 32 male Sprague Dawley (SD) rats (8 weeks old). Eight weeks later, type 1 diabetes mellitus-induced erectile dysfunction (DMED) in rats was confirmed using an apomorphine test. Our study consisted of 3 groups: (i) nondiabetic control group (n = 8), (ii) DMED + vehicle group (DMED group; n = 8), and (iii) DMED + GKT-137831 group (n = 9); GKT-137831 was given as a once-daily intraperitoneal injection for 4 weeks. Cavernous nerve electrostimulation was used to evaluate erectile function. Western blot, ELISA, immunohistochemistry, and immunofluorescence were used to measure expression of specific proteins, and DHE fluorescent probe was performed to detect ROS level. OUTCOMES Intracavernous pressure (ICP), nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway, oxidative stress level, inflammatory response, corporal autophagy, and apoptosis were measured. RESULTS Erectile function in the DMED group was significantly impaired compared to the nondiabetic control group, whereas this impairment was improved with GKT-137831 treatment by 70%. Similarly, endothelial function and overactivated oxidative stress in the corpus cavernosum (CC) of the DMED + GKT-137831 group were improved. The DMED group showed serious inflammatory responses and excessive autophagy, which were inhibited by GKT-137831 treatment in the DMED + GKT-137831 group. CLINICAL TRANSLATION Our study showed improvement in erectile function with GKT-137831 in a diabetic rat ED model. STRENGTH AND LIMITATIONS This study suggested for the first time that GKT-137831, an NOX1/4 inhibitor undergoing clinical trials, is effective in improving erectile function in rats with type 1 DMED. However, we only investigated GKT-137831 treatment of streptozotocin-induced type 1 diabetic rats, and therapeutic evidence in other types of diabetes is lacking. CONCLUSION GKT-137831 improves erectile function by 70% in type 1 DMED rats and constitutes a promising compound for the treatment of type 1 DMED, likely by inhibition of overactivated oxidative stress, down-regulation of proinflammatory factors, and amelioration of excessive autophagy and endothelial function. B Zhou, Y Chen, H Yuan, et al. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021;18:1970-1983.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinwei Chen
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixing Yuan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Activation of NADPH oxidase mediates mitochondrial oxidative stress and atrial remodeling in diabetic rabbits. Life Sci 2021; 272:119240. [PMID: 33600862 DOI: 10.1016/j.lfs.2021.119240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 01/05/2023]
Abstract
AIMS The mechanisms of atrial fibrillation (AF) in diabetes mellitus (DM) involve a complex interplay between increased oxidative stress, mitochondrial dysfunction and atrial remodeling. In this study, we examined the effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation on mitochondrial oxidative stress and atrial remodeling in a rabbit model of diabetes mellitus (DM). MAIN METHODS Healthy rabbits were selected and randomly divided into control, diabetic and apocynin administration group. Parameters of echocardiography, atrial electrophysiology, oxidative stress and mitochondrial function were compared between the different groups. KEY FINDINGS Compared to the control group, the DM group showed higher activity of NADPH oxidase, increased oxidative stress, larger left atrial diameter, a reduction in atrial mean conduction velocity. These findings were associated with increased interstitial fibrosis of the atria and higher atrial fibrillation (AF) inducibility. Moreover, atrial ultrastructure and mitochondrial function such as the mitochondrial respiratory control rate (RCR) were impaired. NADPH oxidase inhibition using the pharmacological agent apocynin improved these changes. SIGNIFICANCE NADPH oxidase activity plays an important role in mitochondrial oxidative stress, which is associated with AF inducibility by promoting adverse atrial remodeling. The NADPH oxidase inhibitor apocynin can prevent these pathological changes and may be a potential drug for AF treatment.
Collapse
|
9
|
Song J, Sun T, Tang Z, Ruan Y, Liu K, Rao K, Lan R, Wang S, Wang T, Liu J. Exosomes derived from smooth muscle cells ameliorate diabetes-induced erectile dysfunction by inhibiting fibrosis and modulating the NO/cGMP pathway. J Cell Mol Med 2020; 24:13289-13302. [PMID: 33009701 PMCID: PMC7701535 DOI: 10.1111/jcmm.15946] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is a major health issue among men with diabetes, and ED induced by diabetes mellitus (DMED) is particularly difficult to treat. Therefore, novel therapeutic approaches for the treatment of DMED are urgently needed. Exosomes, nanosized particles involved in many physiological and pathological processes, may become a promising tool for DMED treatment. In this study, we investigated the therapeutic effect of exosomes derived from corpus cavernosum smooth muscle cells (CCSMC‐EXOs) on erectile function in a rat model of diabetes and compared their effect with that of exosomes derived from mesenchymal stem cells (MSC‐EXOs). We incubated labelled CCSMC‐EXOs and MSC‐EXOs with CCSMCs and then observed uptake of the exosomes at different time points using laser confocal microscopy. CCSMC‐EXOs were more easily taken up by CCSMCs. The peak concentration and retention time of labelled CCSMC‐EXOs and MSC‐EXOs in the corpus cavernosum of DMED rats after intracavernous injection were compared by in vivo imaging techniques. Intracavernous injection of CCSMC‐EXOs was associated with a relatively high peak concentration and long retention time. Our data showed that CCSMC‐EXOs could improve erectile function in DMED rats. Meanwhile, CCSMC‐EXOs could exert antifibrotic effects by increasing the smooth muscle content and reducing collagen deposition. CCSMC‐EXOs also increased the expression of eNOS and nNOS, followed by increased levels of NO and cGMP. These findings initially identify the possible role of CCSMC‐EXOs in ameliorating DMED through inhibiting corporal fibrosis and modulating the NO/cGMP signalling pathway, providing a theoretical basis for a breakthrough in the treatment of DMED.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Taotao Sun
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhe Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yajun Ruan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kang Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ke Rao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ruzhu Lan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shaogang Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
10
|
Gonzaga NA, do Vale GT, da Silva CB, Pinheiro LC, Leite LN, Carneiro FS, Tanus-Santos JE, Tirapelli CR. Treatment with nitrite prevents reactive oxygen species generation in the corpora cavernosa and restores intracavernosal pressure in hypertensive rats. Nitric Oxide 2020; 94:19-26. [DOI: 10.1016/j.niox.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
|
11
|
Cui K, Tang Z, Li CC, Wang T, Rao K, Wang SG, Liu JH, Chen Z. Lipoxin A4 improves erectile dysfunction in rats with type I diabetes by inhibiting oxidative stress and corporal fibrosis. Asian J Androl 2019; 20:166-172. [PMID: 29111541 PMCID: PMC5858102 DOI: 10.4103/aja.aja_49_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that oxidative stress and corporal fibrosis in penile tissues of rats were key pathological factors of erectile dysfunction induced by diabetic mellitus (DMED). Lipoxin A4 (LXA4) was reported to inhibit oxidative stress and fibrosis diseases, while whether it could exert a protective role on erectile function was not clear. Type I diabetic mellitus (DM) was induced in thirty male 10-week-old Sprague-Dawley rats using streptozotocin. Ten weeks later, twenty-two rats with DMED confirmed by an apomorphine test were divided into two groups: the DMED group (n = 11) and the DMED + LXA4 group (n = 11; LXA4 injection daily for 4 weeks). In addition, another ten age-matched rats formed the Control group. We found that erectile function was significantly impaired in the DMED group compared with the Control group, but was improved in the DMED + LXA4 group. Similarly, the over-activated oxidative stress and impaired endothelial function in the DMED group were both improved in the DMED + LXA4 group. Moreover, the DMED group showed serious corporal fibrosis, which was also inhibited by the treatment of LXA4 in the DMED + LXA4 group. Taken together, LXA4 could exert an inhibition role on oxidative stress and fibrosis to improve DMED effectively.
Collapse
Affiliation(s)
- Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan-Chang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Alkan I, Yüksel M, Özveri H, Atalay A, Canat HL, Culha MG, Arabacı Ç, Bozkurt M, Başar M. Semen reactive oxygen species levels are correlated with erectile function among chronic prostatitis/chronic pelvic pain syndrome patients. Int J Impot Res 2018; 30:335-341. [PMID: 30068978 DOI: 10.1038/s41443-018-0047-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is often associated with erectile dysfunction (ED). However, the underlying pathophysiological mechanisms of ED occurrence are still unclear in patients with CP/CPPS. The aim of the study was to investigate superoxide anion (O2•-) and total reactive oxygen species (ROS) production in semen of men with category IIIA CP/CPPS and their association with ED. This prospective study included 33 men with category IIIA CP/CPPS. Control group consisted of 13 healthy men. Total ROS and O2•- production were assayed by luminol and lucigenin-dependent chemiluminescence (CL) methods, respectively. ED was evaluated using the IIEF-5 questionnaire. Patients with CP/CPPS had significantly higher seminal total ROS and O2•- levels than healthy control subjects (2.9 ± 0.5 relative light unit (RLU) vs. 2.4 ± 0.2 RLU, p < 0.001; luminol-dependent CL and 2.5 ± 0.4 RLU vs. 2.3 ± 0.2 RLU, p = 0.02; lucigenin-dependent CL, respectively). Seminal O2•- and ROS levels were negatively correlated with IIEF-5 scores (r = -0.556, r = -0.536; p < 0.001, respectively). These results may suggest O2•-/ROS overproduction could be one of the important mechanisms in the etiology of ED development in CP/CPPS patients.
Collapse
Affiliation(s)
- Ilter Alkan
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey.
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Services, Marmara University, Istanbul, Turkey
| | - Hakan Özveri
- Department of Urology and Andrology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Anıl Atalay
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Halil Lütfi Canat
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Gokhan Culha
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Çiğdem Arabacı
- Department of Microbiology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Murad Başar
- Department of Urology and Andrology, Memorial Şişli Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Yang J, Zhang Y, Zang G, Wang T, Yu Z, Wang S, Tang Z, Liu J. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 2018; 6:498-509. [PMID: 29603682 DOI: 10.1111/andr.12483] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- J. Yang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Y. Zhang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - G. Zang
- Department of Urology; Xuzhou City Centre Hospital; Xuzhou China
| | - T. Wang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Yu
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - S. Wang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Tang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - J. Liu
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
14
|
LIU JJ, LU Y, PING NN, LI X, LIN YX, LI CF. Apocynin Ameliorates Pressure Overload-Induced Cardiac Remodeling by Inhibiting Oxidative Stress and Apoptosis. Physiol Res 2017; 66:741-752. [DOI: 10.33549/physiolres.933257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays an important role in pressure overload-induced cardiac remodeling. The purpose of this study was to determine whether apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, attenuates pressure overload-induced cardiac remodeling in rats. After abdominal aorta constriction, the surviving rats were randomly divided into four groups: sham group, abdominal aorta constriction group, apocynin group, captopril group. Left ventricular pathological changes were studied using Masson’s trichrome staining. Metalloproteinase-2 (MMP-2) levels in the left ventricle were analyzed by western blot and gelatin zymography. Oxidative stress and apoptotic index were also examined in cardiomyocytes using dihydroethidium and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), respectively. Our results showed that abdominal aorta constriction significantly caused excess collagen deposition and cardiac insult. Treatment with apocynin significantly inhibited deposition of collagen and reduced the level of MMP-2. Furthermore, apocynin also decreased the NADPH oxidase activity, reactive oxygen species production and cardiomyocyte apoptotic index. Interestingly, apocynin only inhibited NADPH oxidase activity without affecting its expression or the level of angiotension II in the left ventricle. In conclusion, apocynin reduced collagen deposition, oxidative stress, and inhibited apoptosis, ultimately ameliorating cardiac remodeling by mechanisms that are independent of the renin-angiotensin system.
Collapse
Affiliation(s)
| | | | | | | | | | - C.-F. LI
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| |
Collapse
|
15
|
Leite LN, do Vale GT, Simplicio JA, De Martinis BS, Carneiro FS, Tirapelli CR. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species. Eur J Pharmacol 2017; 804:82-93. [DOI: 10.1016/j.ejphar.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/09/2023]
|
16
|
Apocynin suppressed the nuclear factor-κB pathway and attenuated lung injury in a rat hemorrhagic shock model. J Trauma Acute Care Surg 2017; 82:566-574. [DOI: 10.1097/ta.0000000000001337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wen J, Wang B, Du C, Xu G, Zhang Z, Li Y, Zhang N. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats. TOHOKU J EXP MED 2016; 237:141-8. [PMID: 26447087 DOI: 10.1620/tjem.237.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED.
Collapse
Affiliation(s)
- Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | | | | | | | | | | | | |
Collapse
|
18
|
Musicki B, Hannan JL, Lagoda G, Bivalacqua TJ, Burnett AL. Mechanistic link between erectile dysfunction and systemic endothelial dysfunction in type 2 diabetic rats. Andrology 2016; 4:977-83. [PMID: 27153512 DOI: 10.1111/andr.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Men with type 2 diabetes mellitus (T2DM) and erectile dysfunction (ED) have greater risk of cardiovascular events than T2DM men without ED, suggesting ED as a predictor of cardiovascular events in diabetic men. However, molecular mechanisms underlying endothelial dysfunction in the diabetic penis explaining these clinical observations are not known. We evaluated whether the temporal relationship between ED and endothelial dysfunction in the systemic vasculature in T2DM involves earlier redox imbalance and endothelial nitric oxidase synthase (eNOS) dysfunction in the penis than in the systemic vasculature, such as the carotid artery. Rats were rendered T2DM by high-fat diet for 2 weeks, followed by an injection with low-dose streptozotocin. After 3 weeks, erectile function (intracavernosal pressure) was measured and penes and carotid arteries were collected for molecular analyses of eNOS uncoupling, protein S-glutathionylation, oxidative stress (4-hydroxy-2-nonenal, 4-HNE), protein expression of NADPH oxidase subunit gp91(phox) , endothelium-dependent vasodilation in the carotid artery, and non-adrenergic, non-cholinergic (NANC)-mediated cavernosal relaxation. Erectile response to electrical stimulation of the cavernous nerve and NANC-mediated cavernosal relaxation was decreased (p < 0.05), while relaxation of the carotid artery to acetylcholine was not impaired in T2DM rats. eNOS monomerization, protein expressions of 4-HNE and gp91(phox) , and protein S-glutathionylation, were increased (p < 0.05) in the penis, but not in the carotid artery, of T2DM compared to non-diabetic rats. In conclusion, redox imbalance, increased oxidative stress by NADPH oxidase, and eNOS uncoupling, occur early in T2DM in the penis, but not in the carotid artery. These molecular changes contribute to T2DM ED, while vascular function in the systemic vasculature remains preserved.
Collapse
Affiliation(s)
- B Musicki
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - J L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - G Lagoda
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - T J Bivalacqua
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - A L Burnett
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| |
Collapse
|
19
|
Li R, Meng X, Zhang Y, Wang T, Yang J, Niu Y, Cui K, Wang S, Liu J, Rao K. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats. PeerJ 2016; 4:e2000. [PMID: 27168996 PMCID: PMC4860316 DOI: 10.7717/peerj.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023] Open
Abstract
Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED) in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement). Reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was assessed by the recording of intracavernous pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS) activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05). The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05). Furthermore, the cyclooxygenase-2 (COX-2) and prostacyclin synthase (PTGIS) expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177)/endothelial nitric oxide synthase (eNOS) ratio were reduced in the castrated rats compared with the controls (each p < 0.05). In addition, the p40(phox) and p67(phox) expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05). Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.
Collapse
Affiliation(s)
- Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianghu Meng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Current affiliation: Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yonghua Niu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin 2015; 36:1473-9. [PMID: 26592514 DOI: 10.1038/aps.2015.101] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022]
Abstract
AIM Transplantation of mesenchymal stem cells (MSCs) for the treatment of diabetic erectile dysfunction (ED) is hampered by apoptosis of the transplanted cells. In diabetic ED, there is increased oxidative stress and decreased NO in the corpora cavernosa, and reactive oxygen species (ROS) induce apoptosis of the transplanted cells. In this study we examined whether and how autophagy was involved in ROS-induced apoptosis of MSCs. METHODS Mouse C3H10 MSCs were treated with H2O2 to simulate the high oxidative condition in diabetic ED. Cell viability was measured using MTT assay. Apoptosis was analyzed by flow cytometry. Apoptosis- and autophagy-related proteins were detected with Western blot assays. Intracellular autophagosome accumulation was studied using transmission electron microscopy. RESULTS Treatment of MSCs with H2O2 (50-400 μmol/L) inhibited the cell viability in concentration- and time-dependent manners. Furthermore, H2O2 (300 μmol/L) induced apoptosis, as well as activated autophagy in MSCs. Pretreatment with lysosome inhibitor chloroquine (10 μmol/L) or PI3K inhibitor 3-methyladenine (5 mmol/L) significantly enhanced H2O2-induced cell death. Pretreatment with JNK inhibitor SP600125 (10 μmol/L) abrogated H2O2-induced accumulation of LC3-II, and attenuated H2O2-induced reduction of Bcl-2 levels in MSCs. CONCLUSION ROS induce autophagy to counteract apoptosis in MSCs by activation of JNK. Thus, augmentation of autophagy may reduce apoptosis, prolonging MSC survival and improving MSC-based therapeutic efficacy for diabetic ED.
Collapse
|
21
|
Wang H, Ding XG, Li SW, Zheng H, Zheng XM, Navin S, Li L, Wang XH. Role of oxidative stress in surgical cavernous nerve injury in a rat model. J Neurosci Res 2015; 93:922-9. [PMID: 25597854 DOI: 10.1002/jnr.23545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022]
Abstract
This study investigates the role of oxidative stress in surgical cavernous nerve (CN) injury in a rat model. Eighty-four male Sprague-Dawley rats were randomly divided into three groups: group 1, sham-operated rats; group 2, bilateral CN-crushed rats; and group 3, bilateral CN-transection-and-sutured-immediately rats. Oxidative stress was evaluated by malondialdehyde levels, super oxide dismutase (SOD) activities, and glutathione peroxidase (GPX) activities in serum. Erectile function was assessed by CN electrostimulation at 3 months with mean maximal intracavernous pressure (ICP) and maximal ICP per mean arterial pressure. Nerve injury was assessed by toluidine blue staining of CNs and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining of penile tissue. GPX protein expression and nitrotyrosine-3 (NT-3) levels in penile tissue were measured. Erectile function and the number of myelinated axons of CNs and NADPH-diaphorase-positive nerve fibers were statistically decreased between groups, from sham to crush to transection. For markers, both nerve-injury groups showed increased oxidative stress markers at early time points, with the transection group showing greater oxidative stress than the crushed group and values normalizing to sham levels by week 12. GPX expression and NT-3 levels in penile tissue were in concordance with the results of SOD and GPX. These results show that oxidative stress plays an important role in injured CNs, and different methods of CN injury can lead to different degrees of oxidative stress in a rat model.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology and Andrology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Welsh C, Shifrin Y, Pan J, Belik J. Infantile hypertrophic pyloric stenosis (IHPS): a study of its pathophysiology utilizing the newborn hph-1 mouse model of the disease. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1198-206. [PMID: 25359537 DOI: 10.1152/ajpgi.00221.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia-1 (hph-1) newborn mouse has a similar phenotype to the human condition. For hph-1 and wild-type control animals, pyloric tissue agonist-induced contractile properties, reactive oxygen species (ROS) generation, cGMP, neuronal nitric oxide synthase (nNOS) content, and Rho-associated protein kinase 2 (ROCK-2) expression and activity were evaluated. Primary pyloric smooth muscle cells from wild-type newborn animals were utilized to evaluate the effect of BH4 deficiency. One-week-old hph-1 mice exhibited a fourfold increase (P < 0.01) in the pyloric sphincter muscle contraction magnitude but similar relaxation values when compared with wild-type animals. The pyloric tissue nNOS expression and cGMP content were decreased, whereas the rate of nNOS uncoupling increased (P < 0.01) in 1-wk-old hph-1 mice when compared with wild-type animals. These changes were associated with increased pyloric tissue ROS generation and elevated ROCK-2 expression/activity (P < 0.05). At 1-3 days of age and during adulthood, the gastric emptying rate of the hph-1 mice was not altered, and there were no genotype differences in pyloric tissue ROS generation, nNOS expression, or ROCK-2 activity. BH4 inhibition in pyloric smooth muscle cells resulted in increased ROS generation (P < 0.01) and ROCK-2 activity (P < 0.05). Oxidative stress upregulated ROCK-2 activity in pyloric tissue, but no changes were observed in newborn fundal tissue in vitro. We conclude that ROS-induced upregulation of ROCK-2 expression accounts for the increased pyloric sphincter tone and nNOS downregulation in the newborn hph-1 mice. The role of ROCK-2 activation in the pathogenesis of IHPS warrants further study.
Collapse
Affiliation(s)
- Christopher Welsh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yulia Shifrin
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jingyi Pan
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jaques Belik
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Silva FH, Lanaro C, Leiria LO, Rodrigues RL, Davel AP, Claudino MA, Toque HA, Antunes E. Oxidative stress associated with middle aging leads to sympathetic hyperactivity and downregulation of soluble guanylyl cyclase in corpus cavernosum. Am J Physiol Heart Circ Physiol 2014; 307:H1393-400. [DOI: 10.1152/ajpheart.00708.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impairment of nitric oxide (NO)-mediated cavernosal relaxations in middle age contributes to erectile dysfunction. However, little information is available about the alterations of sympathetic neurotransmission and contraction in erectile tissue at middle age. This study aimed to evaluate the alterations of the contractile machinery associated with tyrosine hydroxylase (TH) in rat corpus cavernosum (RCC) at middle age, focusing on the role of superoxide anion. Male Wistar young (3.5-mo) and middle-aged (10-mo) rats were used. Electrical-field stimulation (EFS)- and phenylephrine-induced contractions were obtained in RCC strips. Levels of reactive-oxygen species (ROS) and TH mRNA expression, as well as protein expressions for α1/β1-subunits of soluble guanylyl cyclase (sGC), in RCC were evaluated. The neurogenic contractile responses elicited by EFS (4–32 Hz) were greater in RCC from the middle-aged group that was accompanied by elevated TH mRNA expression ( P < 0.01). Phenylephrine-induced contractions were also greater in the middle-aged group. A 62% increase in ROS generation in RCC from middle-aged rats was observed. The mRNA expression for the α1A-adrenoceptor remained unchanged among groups. Protein levels of α1/β1-sGC subunits were decreased in RCC from the middle-aged compared with young group. The NADPH oxidase inhibitor apocynin (85 mg·rat−1·day−1, 4 wk) fully restored the enhanced ROS production, TH mRNA expressions, and α1/β1-subunit sGC expression, indicating that excess of superoxide anion plays a major role in the sympathetic hyperactivity and hypercontractility in erectile tissue at middle age. Reduction of oxidative stress by dietary antioxidants may be an interesting approach to treat erectile dysfunction in aging population.
Collapse
Affiliation(s)
- Fábio H. Silva
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Carolina Lanaro
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Luiz Osório Leiria
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Renata Lopes Rodrigues
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Ana Paula Davel
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Mário A. Claudino
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Haroldo A. Toque
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| |
Collapse
|
24
|
Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2014; 63:466-82. [DOI: 10.1002/glia.22765] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ana I. Rodriguez-Perez
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Ana Borrajo
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jannette Rodriguez-Pallares
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Maria J. Guerra
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jose L. Labandeira-Garcia
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| |
Collapse
|
25
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
26
|
Silva FH, Leiria LO, Alexandre EC, Davel APC, Mónica FZ, De Nucci G, Antunes E. Prolonged therapy with the soluble guanylyl cyclase activator BAY 60-2770 restores the erectile function in obese mice. J Sex Med 2014; 11:2661-70. [PMID: 25196910 DOI: 10.1111/jsm.12682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cardiovascular and endocrine-metabolic diseases associated with increased oxidative stress such as obesity lead to erectile dysfunction (ED). Activators of soluble guanylyl cyclase (sGC) such as BAY 60-2770 reactivate the heme-oxidized sGC in vascular diseases. AIM This study aimed to evaluate the effects of 2-week oral intake with BAY 60-2270 on a murine model of obesity-associated ED. METHODS C57BL/6 male mice were fed for 12 weeks with standard chow or high-fat diet. Lean and obese mice were treated with BAY 60-2770 (1 mg/kg/day, 2 weeks). MAIN OUTCOME MEASURES Measurements of intracavernosal pressure (ICP), along with acetylcholine (10(-9) to 10(-5) M) and electrical field stimulation (EFS; 4-10 Hz)-induced corpus cavernosum relaxations in vitro, were obtained. Levels of cyclic guanosine monophosphate (cGMP), reactive oxygen species (ROS), and sGC protein expressions in cavernosal tissues were measured. RESULTS Cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly lower in obese compared with lean mice (P < 0.05). Two-week therapy with BAY 60-2770 fully reversed the decreased ICP in obese group. Acetylcholine-induced cavernosal relaxations were 45% lower (P < 0.001) in obese mice, which were fully restored by BAY 60-2770 treatment. Likewise, the EFS-induced relaxations in obese mice were restored by BAY 60-2770. Basal cGMP content in erectile tissue was 68% lower (P < 0.05) in obese mice, an effect normalized by BAY 60-2770. Levels of ROS were 52% higher (P < 0.05) whereas protein expression of α1 sGC subunit was reduced in cavernosal tissue of obese mice, both of which were normalized by BAY 60-2770. In lean group, BAY 60-2770 did not significantly affect any functional, biochemical, or molecular parameter analyzed. CONCLUSIONS Two-week therapy with BAY 60-2770 restores the erectile function in obese mice that is associated with reduced ROS levels, up-regulation of α1 sGC subunit, and increased cGMP levels in the erectile tissue.
Collapse
Affiliation(s)
- Fábio H Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
28
|
Goswami SK, Inamdar MN, Jamwal R, Dethe S. Effect of Cinnamomum cassia methanol extract and sildenafil on arginase and sexual function of young male Wistar rats. J Sex Med 2014; 11:1475-83. [PMID: 24758372 DOI: 10.1111/jsm.12535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Herbs have been used as an aphrodisiac since ages. Cinnamomum cassia is an important ingredient of many Ayurvedic formulations to treat male sexual disorder including erectile dysfunction (ED). AIM The objective of the present study was to evaluate erectogenic and aphrodisiac activity of methanol extract of C. cassia bark in young male rats. METHODS Methanol extract of C. cassia was screened in vitro for arginase inhibition potential and IC50 was determined. Effect of the extract was observed in vitro on phenylephrine pre-contracted isolated rat corpus cavernosum smooth muscle (CCSM) at 0.1, 1, 10, and 100 μg/mL. Young male Wistar rats were dosed with extract at 100 mg/kg body weight for 28 days and its effects on sexual behavior and penile smooth muscle : collagen level were observed. MAIN OUTCOME MEASURE Effect of C. cassia was studied on arginase activity in vitro and sexual behavior of young male rats. RESULTS C. cassia inhibited arginase activity in vitro with an IC50 of 61.72 ± 2.20 μg/mL. The extract relaxed phenylephrine pre-contracted isolated rat CCSM up to 43% and significantly increased (P < 0.05) sexual function of young male rats. Treatment with the extract also increased smooth muscle level and decreased collagen level in rat penile tissue. CONCLUSION The study proves usefulness of methanol extract of C. cassia bark for increasing sexual function.
Collapse
Affiliation(s)
- Sumanta K Goswami
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
| | | | | | | |
Collapse
|
29
|
Decaluwé K, Pauwels B, Boydens C, Van de Voorde J. Treatment of erectile dysfunction: new targets and strategies from recent research. Pharmacol Biochem Behav 2013; 121:146-57. [PMID: 24291648 DOI: 10.1016/j.pbb.2013.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 12/15/2022]
Abstract
In recent years, research on penile erection has increasingly been centered on the molecular mechanisms involved. Major progress has been made in the field and at present a whole number of neurotransmitters, chemical effectors, growth factors, second-messenger molecules, ions, intercellular proteins, and hormones have been characterized as components of the complex process of erection. This knowledge has led to the discovery of several new therapeutic targets and multiple medical approaches for the treatment of erectile dysfunction (ED). This review focuses on the progress made in this field within the last few years.
Collapse
Affiliation(s)
- K Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - B Pauwels
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - C Boydens
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - J Van de Voorde
- Department of Pharmacology, Ghent University, Ghent, Belgium.
| |
Collapse
|
30
|
Kwon MH, Ryu JK, Kim WJ, Jin HR, Song KM, Kwon KD, Batbold D, Yin GN, Koh GY, Suh JK. Effect of intracavernous administration of angiopoietin-4 on erectile function in the streptozotocin-induced diabetic mouse. J Sex Med 2013; 10:2912-27. [PMID: 23937122 DOI: 10.1111/jsm.12278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a highly prevalent complication of diabetes, and the severity of endothelial dysfunction is one of the most important factors in reduced responsiveness to oral phosphodiesterase type 5 inhibitors. AIM To study the effects of human angiopoietin-4 (Ang-4) protein on erectile function in diabetic mice. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin into 8-week-old C57BL/6J male mice. At 8 weeks after the induction of diabetes, the animals were divided into four groups: control nondiabetic mice and diabetic mice receiving two successive intracavernous injections of phosphate buffered saline (days -3 and 0), a single intracavernous injection of Ang-4 protein (day 0), or two successive intracavernous injections of Ang-4 protein (days -3 and 0). MAIN OUTCOME MEASURES One week after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested and stained with hydroethidine or antibodies to Ang-4, platelet/endothelial cell adhesion molecule-1, and phosphorylated endothelial nitric oxide synthase (eNOS). We also determined the differential expression of Ang-4 in cavernous tissue in the control and diabetic mice. The effect of Ang-4 protein on the phosphorylation of Tie-2, Akt, and eNOS was determined in human umbilical vein endothelial cells (HUVECs) by Western blot. RESULTS The cavernous expression of Ang-4 was downregulated in diabetic mice; Ang-4 was mainly expressed in endothelial cells. Local delivery of Ang-4 protein significantly increased cavernous endothelial content, induced eNOS phosphorylation, and decreased the generation of superoxide anion and apoptosis in diabetic mice. Ang-4 protein strongly increased the phosphorylation of Tie-2, Akt, and eNOS in HUVECs. Repeated intracavernous injections of Ang-4 induced significant restoration of erectile function in diabetic mice (87% of control values), whereas a single intracavernous injection of Ang-4 protein elicited modest improvement. CONCLUSIONS Cavernous endothelial regeneration by use of Ang-4 protein may have potential for the treatment of vascular disease-induced ED, such as diabetic ED.
Collapse
Affiliation(s)
- Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dalaklioglu S, Kuscu N, Celik-Ozenci C, Bayram Z, Nacitarhan C, Ozdem SS. Chronic treatment with taurine ameliorates diabetes-induced dysfunction of nitric oxide-mediated neurogenic and endothelium-dependent corpus cavernosum relaxation in rats. Fundam Clin Pharmacol 2013; 28:394-404. [PMID: 23848484 DOI: 10.1111/fcp.12041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/02/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
This study was aimed to examine the effect of chronic taurine treatment on corpus cavernosum dysfunction in diabetic rats and to investigate possible underlying mechanisms. Thirty male rats were randomized to three groups of 10 each, including control, diabetic, and taurine-treated diabetic. Diabetes was induced in rats by streptozotocin (STZ, single intraperitoneal dose of 50 mg/kg body weight). Taurine was administered orally for 12 weeks (1% w/v in drinking water) from the day on which STZ was injected. At the end of the 12th week, strips of corpus cavernosum were suspended in an organ bath system for functional studies. Nitric oxide (NO)-mediated endothelium-dependent and neurogenic corpus cavernosum relaxation were evaluated by acetylcholine (ACh, 0.1-100 μm) and electrical field stimulation (EFS, 30 V, 5 ms, 2-32 Hz), respectively. The expressions of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS) (Ser-1177), neuronal nitric oxide synthase (nNOS), NADPH oxidase subunit gp91(phox) , Rho A, and Rho kinase in corpus cavernosum were semi-quantitatively assessed by immunohistochemistry. Induction of diabetes resulted in significant inhibition of NO-mediated endothelium-dependent and neurogenic corpus cavernosum relaxation. Furthermore, eNOS, p-eNOS, and nNOS expressions decreased significantly in diabetic rats compared to controls, while gp91(phox) , RhoA and Rho kinase expressions increased significantly. The diminished relaxation response to ACh and EFS as well as diabetes-related changes in expressions of these proteins in corpus cavernosum of diabetic rats was significantly improved by taurine. Taurine treatment improves NO-mediated relaxations of corpus cavernosum in diabetic rats probably by inhibiting NADPH oxidase/Rho kinase pathways.
Collapse
Affiliation(s)
- Selvinaz Dalaklioglu
- Department of Pharmacology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Shiota A, Hotta Y, Kataoka T, Morita M, Maeda Y, Kimura K. Oral L-citrulline supplementation improves erectile function in rats with acute arteriogenic erectile dysfunction. J Sex Med 2013; 10:2423-9. [PMID: 23844604 DOI: 10.1111/jsm.12260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Oral L-citrulline supplementation increases serum L-arginine levels more efficiently than L-arginine itself and increases nitric oxide (NO) production. AIM To investigate whether oral L-citrulline supplementation improves erectile function in rats with acute arteriogenic erectile dysfunction (ED). METHODS We divided 8-week-old male Wistar-ST rats into 3 groups: sham-operated rats (control group), arteriogenic ED rats who underwent ligation of both internal iliac arteries (ligation group), and arteriogenic ED rats receiving oral 2% L-citrulline water supplementation (citrulline group). Citrulline water was given to arteriogenic ED rats for 3 weeks from 1 week after surgery. Erectile function was evaluated by maximum intracavernous pressure/mean arterial pressure (ICP/MAP) ratios via cavernous nerve stimulation at 4 weeks after surgery. Then, the penises were resected, stained with Masson's trichrome, and observed microscopically. Serum nitrogen oxides (NOx) levels were measured by high-performance liquid chromatography. Bonferroni's multiple t-test was used for statistical analysis. MAIN OUTCOME MEASURES The main outcome measures were changes in ICP/MAP, smooth muscle (SM)/collagen ratios, and NOx levels following L-citrulline supplementation. RESULTS The ICP/MAP ratio in the ligation group was significantly lower than that in the control group (P<0.05), denoting ED. The ICP/MAP ratio of the citrulline group was significantly higher than that of the ligation group (P<0.05), indicating ED amelioration. Levels of NOx in the ligation group were significantly lower than in the control group (P<0.05), while those in the citrulline group were significantly higher than in the ligation group (P<0.05). SM/collagen ratios in the ligation group were significantly lower than in the control group (P<0.05), while ratios in the citrulline group were significantly higher than those in the ligation group (P<0.05). CONCLUSIONS Oral L-citrulline supplementation improved ICP/MAP and SM/collagen ratios and increased NOx. Therefore, oral L-citrulline supplementation might be a useful novel therapy for acute arteriogenic ED.
Collapse
Affiliation(s)
- Arufumi Shiota
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Zheng H, Liu X, Patel KP. Centrally mediated erectile dysfunction in rats with type 1 diabetes: role of angiotensin II and superoxide. J Sex Med 2013; 10:2165-76. [PMID: 23841890 DOI: 10.1111/jsm.12248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. AIM This study aims to determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)- and nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. METHODS Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol, or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. MAIN OUTCOME MEASURE Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. RESULTS Two weeks of enalapril, losartan, or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses-T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 minutes, P < 0.05; SNP responses-T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 minutes, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections, were also significantly increased in T1D rats after enalapril, losartan, or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased, and superoxide production was reduced in T1D rats after these treatments. CONCLUSIONS These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes to the dysfunction of central NMDA-induced erectile responses in T1D rats via stimulation of superoxide.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
34
|
Yang J, Wang T, Zhang Y, Li R, Wang S, Xu H, Liu J, Ye Z. Altered expression of mitofusin 2 in penile tissues of diabetic rats. Andrologia 2013; 46:522-8. [PMID: 23682852 DOI: 10.1111/and.12108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/28/2022] Open
Abstract
Diabetic erectile dysfunction (ED) is a common complication in diabetes mellitus, and the efficacy of first-line therapies is not satisfactory. Recent studies revealed that corporal apoptosis was responsible for the nonresponsiveness of severe ED to phosphodiesterase type 5 inhibitors. Mitofusin 2 (Mfn2) is a versatile protein, regulating mitochondrial morphology and playing an important role in apoptosis. Several studies showed that expression of Mfn2 was decreased in STZ-induced diabetic rats' kidney, myocardium and retina, which was associated with diabetic nephropathy, cardiomyopathy and retinopathy respectively. In this study, our aim was to explore the expression of Mfn2 and apoptosis in diabetic rats' penes. We found that erectile function (ICP/MAP) elicited by electrical stimulation of cavernous nerve was markedly impaired in diabetic rats compared with the normal rats. The mRNA and protein levels of Mfn2 were found to be significantly reduced in diabetic rats' penile tissues. Compared with normal rats, the content of smooth muscle and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio were dramatically decreased, and penile apoptotic index and expression of activated-caspase-3 were dramatically increased in diabetic rats. This data indicated that repression of Mfn2 in diabetic rats' penes might be associated with excessive apoptosis in diabetes-induced severe ED.
Collapse
Affiliation(s)
- J Yang
- Department of Urology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nishimatsu H, Suzuki E, Nomiya A, Niimi A, Suzuki M, Fujimura T, Fukuhara H, Homma Y. Adrenomedullin and angiopoietin-1 additively restore erectile function in diabetic rats: comparison with the combination therapy of vascular endothelial growth factor and angiopoietin-1. J Sex Med 2013; 10:1707-19. [PMID: 23651347 DOI: 10.1111/jsm.12177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a major health problem. We have shown that adrenomedullin (AM) restores erectile function in diabetic rats. AIM The aim of this study is to explore a better treatment for ED, we examined whether combination of AM and angiopoietin-1 (Ang-1) was more effective to treat ED than treatment with AM alone or Ang-1 alone. We also compared the effect of the combination therapy with that of treatment with vascular endothelial growth factor-A (VEGF-A). METHODS Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Adenoviruses expressing AM (AdAM), Ang-1 (AdAng-1), and VEGF-A (AdVEGF-A) were injected into the penis 6 weeks after STZ administration. Erectile function, penile histology, and protein expression were analyzed 4 weeks after the injection of the adenoviruses. MAIN OUTCOME MEASURES Intracavernous pressure and mean arterial pressure were measured to evaluate erectile function. The morphology of the penis was analyzed by Elastica van Gieson stain and immunohistochemistry. The expression of α-smooth muscle actin (SMA), VE-cadherin and type I collagen was assessed by Western blot analysis. RESULTS Infection with AdAM plus AdAng-1 more effectively restored erectile function than infection with AdAM alone or AdAng-1 alone. This combination therapy restored erectile function to a level similar to that observed in the age-matched Wistar rats. Expression of SMA and VE-cadherin increased more significantly in the AdAM plus AdAng-1-treated group than in the AdAM- or AdAng-1-treated group. Although AdVEGF-A infection restored erectile function significantly, it also caused enlargement of the trabeculae of the cavernous body, aberrant angiogenesis, and overproduction of type I collagen. CONCLUSIONS These results suggested that combination therapy with AM and Ang-1 potently restored erectile function and normal morphology of the cavernous body compared with VEGF-A administration. This combination therapy will be useful to treat ED patients with a severely damaged cavernous body.
Collapse
Affiliation(s)
- Hiroaki Nishimatsu
- The Department of Urology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Petrônio MS, Zeraik ML, da Fonseca LM, Ximenes VF. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 2013; 18:2821-39. [PMID: 23455672 PMCID: PMC6269682 DOI: 10.3390/molecules18032821] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M-1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Collapse
Affiliation(s)
- Maicon S. Petrônio
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Maria Luiza Zeraik
- Departamento de Química Orgânica, Instituto de Química, Unesp-Univ Estadual Paulista, Araraquara, SP, 14800-900, Brazil; E-Mail:
| | - Luiz Marcos da Fonseca
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Valdecir F. Ximenes
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
- Departamento de Química, Faculdade de Ciências, Unesp-Univ Estadual Paulista, Bauru, SP 17033-360, Brazil
| |
Collapse
|
37
|
|