Lee J, Park I, Lee ZW, Kim SW, Baek N, Park HS, Park SU, Kwon S, Kim H. Regulation of the major vacuolar Ca²⁺ transporter genes, by intercellular Ca²⁺ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea.
Mol Biol Rep 2012;
40:177-88. [PMID:
23138186 DOI:
10.1007/s11033-012-2047-4]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/02/2012] [Indexed: 11/26/2022]
Abstract
Calcium is an essential plant macronutrient that has unique structural and signaling roles related to tip-burn disorder in Brassica spp. crops. For two types of cabbage inbred lines, tip-burn susceptible and resistant, we measured and compared major macronutrient cations, including Ca(2+), in leaves. In both lines, Ca(2+), Mg(2+), Na(+), and K(+), accumulated more in leaf base than in leaf apex. Ca(2+) and K(+) were >2 times more abundant in the tip-burn resistant line, while Na(+) was higher in the susceptible line. Ca(2+) differences between the two lines resulted from differential accumulation of calcium into cell vacuoles. We profiled major vacuolar Ca(2+) transporters, in both cabbage lines, by growth time and intercellular Ca(2+) concentration. Expression pattern of several Ca(2+) transporter genes differed between tip-burn susceptible and resistant lines by growth time points. We also identified promoter regions of the major Ca(2+) vacuole transporter genes, CAX1, ACA4, and ACA11, which displayed hormonal, light and defense-related cis-acting regulatory elements. Finally, transporter genes in the two cabbage lines responded differently to abiotic stresses, demonstrating diversity in gene regulation among orthologous genes.
Collapse