1
|
Wang Y, Hu Y, Ren H, Zhao X, Yuan Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem 2024; 451:139384. [PMID: 38692235 DOI: 10.1016/j.foodchem.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and β-galactosidase (β-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaping Hu
- Key Laboratory of Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Hongfang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Wang Y, Zhao Y, Wu Y, Zhao X, Hao Z, Luo H, Yuan Z. Transcriptional profiling of long non-coding RNAs regulating fruit cracking in Punica granatum L. under bagging. FRONTIERS IN PLANT SCIENCE 2022; 13:943547. [PMID: 36304394 PMCID: PMC9592827 DOI: 10.3389/fpls.2022.943547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fruit cracking tremendously damages the appearance of fruit, easily leads to pathogen invasion, greatly reduces the marketability and causes immense economic losses. The pivotal role of long non-coding RNAs (lncRNAs) in diverse biological processes has been confirmed, while the roles of lncRNAs underlying fruit cracking remain poorly understood. In this study, the incidence of fruit cracking was 7.26% under the bagging treatment, the control group was 38.11%, indicating that bagging considerably diminished the fruit cracking rate. LncRNA libraries for fruit cracking (FC), fruit non-cracking (FNC) and fruit non-cracking under bagging (FB) in pomegranate (Punica granatum L.) were performed and analysed via high-throughput transcriptome sequencing. A total of 3194 lncRNAs were obtained with a total length of 4898846 nt and an average length of 1533.77 nt in pomegranate. We identified 42 differentially expressed lncRNAs (DELs) and 137 differentially expressed mRNAs (DEGs) in FC vs FNC and 35 DELs and 160 DEGs in FB vs FC that formed co-expression networks respectively, suggesting that there are involved in phytohormone signaling pathway, lignin catabolic process, lipid transport/binding, cutin biosynthetic process and cell wall organization. We also found that 18 cis-acting DELs regulated 18 target genes, and 10 trans-acting DELs regulated 24 target genes in FC vs FNC, 23 DELs regulate 23 target genes for the cis-acting lncRNAs and 12 DELs regulated 36 target genes in FB vs FC, which provides an understanding for the regulation of the fruit cracking. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated that DELs participated in calcium ion binding, glycerophospholipid metabolism, flavonoid biosynthetic process, cell wall biogenesis, xyloglucan metabolic process, hormone signal transduction and starch and sucrose metabolism. Our findings provide new insights into the roles of lncRNAs in regulating the fruit cracking and lay the foundation for further improvement of pomegranate quality.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhaoxiang Hao
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Patil PG, Jamma S, N M, Bohra A, Pokhare S, Dhinesh Babu K, Murkute AA, Marathe RA. Chromosome-specific potential intron polymorphism markers for large-scale genotyping applications in pomegranate. FRONTIERS IN PLANT SCIENCE 2022; 13:943959. [PMID: 36110362 PMCID: PMC9468638 DOI: 10.3389/fpls.2022.943959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Despite the availability of whole genome assemblies, the identification and utilization of gene-based marker systems has been limited in pomegranate. In the present study, we performed a genome-wide survey of intron length (IL) markers in the 36,524 annotated genes of the Tunisia genome. We identified and designed a total of 8,812 potential intron polymorphism (PIP) markers specific to 3,445 (13.40%) gene models that span 8 Tunisia chromosomes. The ePCR validation of all these PIP markers on the Tunisia genome revealed single-locus amplification for 1,233 (14%) markers corresponding to 958 (27.80%) genes. The markers yielding single amplicons were then mapped onto Tunisia chromosomes to develop a saturated linkage map. The functional categorization of 958 genes revealed them to be a part of the nucleus and the cytoplasm having protein binding and catalytic activity, and these genes are mainly involved in the metabolic process, including photosynthesis. Further, through ePCR, 1,233 PIP markers were assayed on multiple genomes, which resulted in the identification of 886 polymorphic markers with an average PIC value of 0.62. In silico comparative mapping based on physically mapped PIP markers indicates a higher synteny of Tunisia with the Dabenzi and Taishanhong genomes (>98%) in comparison with the AG2017 genome (95%). We then performed experimental validation of a subset of 100 PIP primers on eight pomegranate genotypes and identified 76 polymorphic markers, with 15 having PIC values ≥0.50. We demonstrated the potential utility of the developed markers by analyzing the genetic diversity of 31 pomegranate genotypes using 24 PIP markers. This study reports for the first time large-scale development of gene-based and chromosome-specific PIP markers, which would serve as a rich marker resource for genetic variation studies, functional gene discovery, and genomics-assisted breeding of pomegranate.
Collapse
Affiliation(s)
| | - Shivani Jamma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Manjunatha N
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Somnath Pokhare
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Rajiv A. Marathe
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| |
Collapse
|
5
|
Ginzberg I, Faigenboim A. Ripening of Pomegranate Skin as Revealed by Developmental Transcriptomics. Cells 2022; 11:cells11142215. [PMID: 35883658 PMCID: PMC9320897 DOI: 10.3390/cells11142215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry—the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening—involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate—hydrolyzable tannins and anthocyanins—were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.
Collapse
|
6
|
The Diversity of Melia azedarach L. from China Based on Transcriptome-Developed SSR Marker. FORESTS 2022. [DOI: 10.3390/f13071011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Melia azedarach L. is a native tree species that can be used in a comprehensive way and is widely distributed in all provinces south of the Yellow River in China. Genetic diversity analysis of different M. azedarach germplasm sources is an important basic work for the selection, evaluation, and genetic improvement of M. azedarach germplasm resources. In this study, 100 pairs of SSR primers were designed and synthesized based on M. azedarach transcriptome data, and 16 pairs of reliable SSR primers were finally selected. The developed primers were used to analyze the genetic diversity of M. azedarach from 15 sources in 10 provinces in East, Central, and South China. The results showed that the frequency of the M. azedarach transcriptome SSR loci was high, and the distribution density was high. There were 15 sources of M. azedarach genetic diversity at a moderate level, and genetic variation was mainly present within the sources. The present study further enriches the existing SSR marker database of the M. azedarach family and can provide a reference for genetic diversity analysis and molecularly assisted breeding of M. azedarach plants at the genomic level.
Collapse
|
7
|
Systematic Analysis and Expression Profiles of the 4-Coumarate: CoA Ligase (4CL) Gene Family in Pomegranate ( Punica granatum L.). Int J Mol Sci 2022; 23:ijms23073509. [PMID: 35408870 PMCID: PMC8999076 DOI: 10.3390/ijms23073509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
4-Coumarate:CoA ligase (4CL, EC6.2.1.12), located at the end of the phenylpropanoid metabolic pathway, regulates the metabolic direction of phenylpropanoid derivatives and plays a pivotal role in the biosynthesis of flavonoids, lignin, and other secondary metabolites. In order to understand the molecular characteristics and potential biological functions of the 4CL gene family in the pomegranate, a bioinformatics analysis was carried out on the identified 4CLs. In this study, 12 Pg4CLs were identified in the pomegranate genome, which contained two conserved amino acid domains: AMP-binding domain Box I (SSGTTGLPKGV) and Box II (GEICIRG). During the identification, it was found that Pg4CL2 was missing Box II. The gene cloning and sequencing verified that this partial amino acid deletion was caused by genome sequencing and splicing errors, and the gene cloning results corrected the Pg4CL2 sequence information in the ‘Taishanhong’ genome. According to the phylogenetic tree, Pg4CLs were divided into three subfamilies, and each subfamily had 1, 1, and 10 members, respectively. Analysis of cis-acting elements found that all the upstream sequences of Pg4CLs contained at least one phytohormone response element. An RNA-seq and protein interaction network analysis suggested that Pg4CL5 was highly expressed in different tissues and may participate in lignin synthesis of pomegranate. The expression of Pg4CL in developing pomegranate fruits was analyzed by quantitative real-time PCR (qRT-PCR), and the expression level of Pg4CL2 demonstrated a decreasing trend, similar to the trend of flavonoid content, indicating Pg4CL2 may involve in flavonoid synthesis and pigment accumulation. Pg4CL3, Pg4CL7, Pg4CL8, and Pg4CL10 were almost not expressed or lowly expressed, the expression level of Pg4CL4 was higher in the later stage of fruit development, suggesting that Pg4CL4 played a crucial role in fruit ripening. The expression levels of 4CL genes were significantly different in various fruit development stages. The results laid the foundation for an in-depth analysis of pomegranate 4CL gene functions.
Collapse
|
8
|
Arlotta C, Toscano V, Genovese C, Calderaro P, Puglia GD, Raccuia SA. Nutraceutical Content and Genetic Diversity Share a Common Pattern in New Pomegranate Genotypes. Molecules 2022; 27:389. [PMID: 35056703 PMCID: PMC8779006 DOI: 10.3390/molecules27020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
The nutraceutical value of pomegranate in the treatment of many diseases is well-documented and is linked to its richness in phenolic compounds. This study aims to evaluate the nutraceutical and genetic diversity of novel pomegranate genotypes (G1-G5) in comparison to leading commercial pomegranate varieties, i.e., 'Wonderful', 'Primosole', 'Dente di Cavallo' and 'Valenciana'. Morphometric measurements were carried out on fruits, accompanied by chemical characterization (total phenolic content, antioxidant activity, carbohydrates and minerals) and the development of four new polymorphic SSR markers involved in the flavonoid pathway. The cultivars displayed a marked variability in the weight and shape of the fruits, as well as in the weight of the arils and juice yield. The highest level of total phenolic content and antioxidant activity was found in 'Wonderful' and G4, while the lowest was in 'Dente di Cavallo'. Furthermore, the results showed that pomegranate juice is an excellent source of minerals, especially potassium, which plays a key role in organ functioning. The new flavonoid-related markers effectively differentiated the cultivars with the same diversity pattern as morpho-chemical characterization, so the SSRs developed in the present study can be used as a rapid tool for the identification of pomegranate cultivars with relevant nutraceutical traits, such as the new genotypes investigated.
Collapse
Affiliation(s)
| | | | - Claudia Genovese
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council (ISAFOM-CNR), 95128 Catania, Italy; (C.A.); (V.T.); (P.C.); (G.D.P.); (S.A.R.)
| | | | | | | |
Collapse
|
9
|
Singh NV, Parashuram S, Sharma J, Potlannagari RS, Karuppannan DB, Pal RK, Patil P, Mundewadikar DM, Sangnure VR, Parvati Sai Arun PV, Mutha NVR, Kumar B, Tripathi A, Peddamma SK, Kothandaraman H, Yellaboina S, Baghel DS, Reddy UK. Comparative transcriptome profiling of pomegranate genotypes having resistance and susceptible reaction to Xanthomonas axonopodis pv. punicae. Saudi J Biol Sci 2020; 27:3514-3528. [PMID: 33304163 PMCID: PMC7714969 DOI: 10.1016/j.sjbs.2020.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/14/2023] Open
Abstract
Pomegranate (Punica granatum L.) is an important fruit crop, rich in fiber, vitamins, antioxidants, minerals and source of different biologically active compounds. The bacterial blight caused by Xanthomonas axonopodispv. punicae is a serious threat to the crop leading to 60–80% yield loss under epiphytotic conditions. In this work, we have generated comparative transcriptome profile to mark the gene expression signatures during resistance and susceptible interactions. We analyzed leaf and fruits samples of moderately resistant genotype (IC 524207) and susceptible variety (Bhagawa) of pomegranate at three progressive infection stages upon inoculation with the pathogen. RNA-Seq with the Illumina HiSeq 2500 platform revealed 1,88,337 non-redundant (nr) transcript sequences from raw sequencing data, for a total of 34,626 unigenes with size >2 kb. Moreover, 85.3% unigenes were annotated in at least one of the seven databases examined. Comparative analysis of gene-expression signatures in resistant and susceptible varieties showed that the genes known to be involved in defense mechanism in plants were up-regulated in resistant variety. Gene Ontology (GO) analysis successfully annotated 90,485 pomegranate unigenes, of which 68,464 were assigned to biological, 78,107 unigenes molecular function and 44,414 to cellular components. Significantly enriched GO terms in DEGs were related to oxidations reduction biological process, protein binding and oxidoreductase activity. This transcriptome data on pomegranate could help in understanding resistance and susceptibility nature of cultivars and further detailed fine mapping and functional validation of identified candidate gene would provide scope for resistance breeding programme in pomegranate.
Collapse
Affiliation(s)
| | - Shilpa Parashuram
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra 413255, India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra 413255, India
| | | | | | - Ram Krishna Pal
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra 413255, India
| | - Prakash Patil
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra 413255, India
| | | | - Vipul R Sangnure
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra 413255, India
| | | | - Naresh V R Mutha
- Nucleome Informatics Private Limited., Hyderabad, Telangana State 500049, India
| | - Bipin Kumar
- Nucleome Informatics Private Limited., Hyderabad, Telangana State 500049, India
| | - Abhishek Tripathi
- Nucleome Informatics Private Limited., Hyderabad, Telangana State 500049, India
| | | | | | - Sailu Yellaboina
- Nucleome Informatics Private Limited., Hyderabad, Telangana State 500049, India
| | | | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| |
Collapse
|
10
|
Patil PG, Jamma SM, Singh NV, Bohra A, Parashuram S, Injal AS, Gargade VA, Chakranarayan MG, Salutgi UD, Dhinesh Babu K, Sharma J. Assessment of genetic diversity and population structure in pomegranate ( Punica granatum L.) using hypervariable SSR markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1249-1261. [PMID: 32549687 PMCID: PMC7266888 DOI: 10.1007/s12298-020-00825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 05/21/2023]
Abstract
The present study investigates the genetic diversity and population structure among 42 diverse pomegranate genotypes using a set of twenty one class I hypervariable SSR markers (> 24 bp), which were reported earlier from the analysis of cv. Dabenzi genome. The study material comprised 16 indigenous and 13 exotic cultivars, and 13 wild accessions. A total of 66 alleles (Na) were detected with an average of 3.14 alleles per marker. The average values of polymorphic information content (PIC), observed heterozygosity (Ho) and Shannon's gene diversity index (I) were 0.44, 0.21 and 0.95, respectively suggesting moderate genetic diversity. The pairwise genetic distance ranged from 0.07 to 0.80 with a mean value of 0.53. Population structure analysis divided all the genotypes into four subpopulations (SP1, SP2, SP3 and SP4). Interestingly, the results of phylogenetic and principal component analyses coincided with the results of structure analysis and the grouping of genotypes followed the geographical origins. AMOVA revealed that 25% of the variation was attributed to differences among populations, whereas 75% within the subpopulations with significant F ST value 0.25 (p < 0.001), indicating a high level of genetic differentiations or low level of gene flow. Based on the F ST values, pomegranate genotypes belonging to SP4 (indigenous cultivars) followed by SP1 (exotic lines) exhibited higher gene diversity and genetic differentiations within and among populations. These genetic relationships based on SSR markers could be harnessed in future genetic improvement of pomegranate through informed hybridization programs.
Collapse
Affiliation(s)
- Prakash G. Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | | | - N. V. Singh
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Shilpa Parashuram
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | | | | | | | | | - K. Dhinesh Babu
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| |
Collapse
|
11
|
Zhao Y, Liu C, Ge D, Yan M, Ren Y, Huang X, Yuan Z. Genome-wide identification and expression of YABBY genes family during flower development in Punica granatum L. Gene 2020; 752:144784. [PMID: 32439372 DOI: 10.1016/j.gene.2020.144784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
The plant-specific YABBY transcription factors have important biological roles in plant morphogenesis, growth and development. In this study, we identified six YABBY genes in pomegranate (Punica granatum) and characterized their expression pattern during flower development. Six PgYABBY genes were divided into five subfamilies (YAB1/3, YAB2, INO, CRC, and YAB5), based on protein sequence, motifs and similarity of exon-intron structure. Next, analysis of putative cis-acting element showed that PgYABBYs contained lots of hormone response and stress response elements. Subsequently, gene function prediction and protein-protein network analysis showed that PgYABBYs were associated with the development of apical meristem, flower, carpel, and ovule. Analysis of PgYABBY genes expression in various structures and organs suggested that PgYABBYs were highly activated in flower, leaf and seed coat. Analysis of expression during flower development in pomegranate showed that PgINO might play critical role in regulating the differentiation of flowers. This study provided a theoretical basis for function research and utilization of YABBY genes in pomegranate.
Collapse
Affiliation(s)
- Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cuiyu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Dapeng Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xianbin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Patil PG, Singh NV, Parashuram S, Bohra A, Mundewadikar DM, Sangnure VR, Babu KD, Sharma J. Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate ( Punica granatum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:683-696. [PMID: 32255932 PMCID: PMC7113349 DOI: 10.1007/s12298-020-00790-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
A total of 17,439 mature miRNAs (~ 21 nt) earlier generated through RNA seq in the pomegranate were used for in silico analysis. After complexity reduction, a total of 1922 representative mature miRNAs were selected and used as query sequences against pomegranate genome to retrieve 2540 homologous contigs with flanking regions (~ 800). By using pre-miRNA prediction web server, a total of 1028 true contigs harbouring pri-miRNAs encoding 1162 pre-miRNAs were identified. Survey of these sequences for SSRs yielded a total of 1358 and 238 SSRs specific to pri-miRNA and pre-miRNAs, respectively. Of these, primer pairs were designed for 897 pri-miRNA and 168 pre-miRNA SSRs. In pri-miRNA sequences, hexa-nucleotides repeats were found to be most abundant (44.18%) followed by mono- (18.41%) and di-nucleotide (17.01%), which is also observed in pre-miRNA sequences. Further, a set of 51 randomly selected pre-miRNA-SSRs was examined for marker polymorphism. The experimental validation of these markers on eight pomegranate genotypes demonstrated 92.15% polymorphism. Utility of these functional markers was confirmed via examination of genetic diversity of 18 pomegranate genotypes using 15 miRNA-SSRs. Further, potential application of miRNA-SSRs for discovery of trait specific candidate genes was showed by validating 51 mature miRNA against publically available 2047 EST sequences of pomegranate by target and network analysis. In summary, the current study offers novel functional molecular markers for pomegranate genetic improvement.
Collapse
Affiliation(s)
- Prakash G. Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - N. V. Singh
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Shilpa Parashuram
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 Uttar Pradesh India
| | | | - Vipul R. Sangnure
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - K. Dhinesh Babu
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| |
Collapse
|
13
|
Wilson AE, Wu S, Tian L. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana. PHYTOCHEMISTRY 2019; 157:184-193. [PMID: 30419412 DOI: 10.1016/j.phytochem.2018.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
UDP-dependent glycosyltransferases (UGTs) convert aglycones into more stable, bioactive, and structurally diverse glycosylated derivatives. Pomegranate (Punica granatum L.) produces various glycosylated phenolic metabolites, e.g. hydrolyzable tannins (HTs), anthocyanins, and flavonoids, and constitutes an excellent system for investigating the corresponding UGT activities. Here we report the cloning and functional characterization of a pomegranate UGT, PgUGT95B2, which is highly active towards flavones and flavonols and can glycosylate at more than one position in the substrate molecule. Particularly, PgUGT95B2 has the strongest activity towards tricetin (flavone with a tri-hydroxylated B-ring) and can act at the 4'-O position of its B-ring. In addition, PgUGT95B2 was able to glycosylate flavones present in pomegranate metabolite extracts. Conversely, PgUGT95B2 did not produce a galloylglucose ester (precursor for HT biosynthesis) or anthocyanins in enzyme assays. Our phylogenetic analysis suggested an independent evolution of PgUGT95B2 and flavone/flavonol UGTs identified in the model plant Arabidopsis thaliana through convergent evolution or gene loss.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
14
|
Sleifer BA, Schwanz M, Danielli LJ, Apel MA, Henriques AT. Development of analytical method for the quality control of the fruit bark of Punica granatum L. (pomegranate) and antichemotatic activity of extract and rich fraction in punicalagins. Biomed Chromatogr 2018; 33:e4393. [PMID: 30239022 DOI: 10.1002/bmc.4393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Pomegranate is of current interest owing to the existing potential for industrial uses of fruit peels. This includes its availability as a raw vegetable material, a byproduct that constitutes residue in the use of the species and is recognized as a functional product, and beneficial health properties, as will be demonstrated in the studies cited. Therefore, it is necessary to ensure its effectiveness and safety. Toward this end, the aim of this study was to develop and validate an analytical method for the separation and quantification of total punicalagin present in the bark of the fruit of Punica granatum by HPLC. Purity tests such as water determination and total ashes were also performed. The ability of the extract and enriched fraction of punicalagin to inhibit leukocyte migration in vitro was determined by the Boyden's chamber method. The developed HPLC method demonstrated good separation and quantification of the punicalagin α and β anomers. The method is efficient and reliable, and can ultimately be used for the analysis of the extract of pomegranate. The crude extract and the fraction of punicalagins significantly inhibited leukocyte migration at concentrations of 1 and 10 μg/mL in relation to the negative control, indicating potential antichemotactic action.
Collapse
Affiliation(s)
| | - Melissa Schwanz
- Produção de Matéria Prima, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Miriam Anders Apel
- Produção de Matéria Prima, Universidade Federal do Rio Grande do Sul, Brazil
| | | |
Collapse
|
15
|
Attanayake R, Eeswaran R, Rajapaksha R, Weerakkody P, Bandaranayake PCG. Biochemical Composition and Expression of Anthocyanin Biosynthetic Genes of a Yellow Peeled and Pinkish Ariled Pomegranate ( Punica granatum L.) Cultivar are Differentially Regulated in Response to Agro-Climatic Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8761-8771. [PMID: 30053779 DOI: 10.1021/acs.jafc.8b02909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The accumulation of beneficial biochemical compounds in different parts of pomegranate ( Punica granatum L.) fruit determines fruit quality and highly depends on environmental conditions. We investigated the effects of agro-climatic conditions on major biochemical compounds and on the expression of major anthocyanin biosynthetic genes in the peels and arils of a yellow-peeled and pink-ariled pomegranate cultivar in three agro-climatologically different locations in Sri Lanka. Drier and warmer climates promoted the accumulation of the measured biochemical compounds, i.e. total phenolic content (TPC), antioxidant capacity (AOX), and α, β, and total punicalagin, in both peels and arils compared to wetter and cooler climates. Pomegranate DFR, F3H, and ANS transcripts in both peels and arils showed higher relative expression in hotter and drier regions, compared to those grown in cooler and wetter conditions. Therefore, growing pomegranates in drier and warmer environments maximizes the production of beneficial biochemical compounds and associated gene expression in pomegranate fruit.
Collapse
Affiliation(s)
| | - Rasu Eeswaran
- Department of Plant, Soil and Microbial Sciences , Michigan State University , East Lansing , Michigan 48824 , United States
| | | | | | | |
Collapse
|
16
|
Luo X, Cao D, Li H, Zhao D, Xue H, Niu J, Chen L, Zhang F, Cao S. Complementary iTRAQ-based proteomic and RNA sequencing-based transcriptomic analyses reveal a complex network regulating pomegranate (Punica granatum L.) fruit peel colour. Sci Rep 2018; 8:12362. [PMID: 30120285 PMCID: PMC6098015 DOI: 10.1038/s41598-018-30088-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
Peel colour is an important factor affecting the marketability of pomegranate fruits. Therefore, elucidating the genetic mechanism of fruit peel colour development may be useful for breeding pomegranate cultivars with enhanced fruit peel colours. In this study, we combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development in pomegranate. We analysed the ‘Tunisia’ (red fruit) and ‘White’ (white fruit) pomegranate cultivars at two stages of fruit development. A total of 27 differentially abundant proteins (increased abundance) and 54 differentially expressed genes (16 up-regulated and 38 down-regulated) were identified from our proteomics and transcriptomics data. The identified proteins and genes contribute to pomegranate fruit peel colour by participating in the biosynthesis of anthocyanins, stilbenoids, diarylheptanoids, gingerols, flavonoids, and phenylpropanoids. Several candidate proteins and genes corresponded to enzymes related to general reactions (PAL, 4CL, DFR, LDOX/ANS, CHS, and F3′5′H) and glycosylation (GT1 and UGAT) of compounds and pigments related to the colour of pomegranate fruit peel. Complementary proteome- and transcriptome-level analyses revealed a complex molecular network controlling fruit peel colour. The candidate genes identified in this study may be useful for the marker-based breeding of new pomegranate cultivars.
Collapse
Affiliation(s)
- Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Hui Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Juan Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Fuhong Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China.
| |
Collapse
|
17
|
Yuan Z, Fang Y, Zhang T, Fei Z, Han F, Liu C, Liu M, Xiao W, Zhang W, Wu S, Zhang M, Ju Y, Xu H, Dai H, Liu Y, Chen Y, Wang L, Zhou J, Guan D, Yan M, Xia Y, Huang X, Liu D, Wei H, Zheng H. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1363-1374. [PMID: 29271050 PMCID: PMC5999313 DOI: 10.1111/pbi.12875] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding.
Collapse
Affiliation(s)
- Zhaohe Yuan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Yanming Fang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Taikui Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- USDA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | | | - Cuiyu Liu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Min Liu
- Biomarker Technologies CorporationBeijingChina
| | - Wei Xiao
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Mengwei Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Youhui Ju
- Biomarker Technologies CorporationBeijingChina
| | - Huili Xu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - He Dai
- Biomarker Technologies CorporationBeijingChina
| | - Yujun Liu
- College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
| | - Yanhui Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Lili Wang
- Biomarker Technologies CorporationBeijingChina
| | - Jianqing Zhou
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Dian Guan
- Biomarker Technologies CorporationBeijingChina
| | - Ming Yan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Yanhua Xia
- Biomarker Technologies CorporationBeijingChina
| | - Xianbin Huang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | | - Hongmin Wei
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | |
Collapse
|
18
|
A Study on the Expression of Genes Involved in Carotenoids and Anthocyanins During Ripening in Fruit Peel of Green, Yellow, and Red Colored Mango Cultivars. Appl Biochem Biotechnol 2017. [PMID: 28643121 DOI: 10.1007/s12010-017-2529-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mango (Mangiferaindica L.) fruits are generally classified based on peel color into green, yellow, and red types. Mango peel turns from green to yellow or red or retain green colors during ripening. The carotenoids and anthocyanins are the important pigments responsible for the colors of fruits. In the present study, peels of different colored cultivars at three ripening stages were characterized for pigments, colors, and gene expression analysis. The yellow colored cultivar "Arka Anmol" showed higher carotenoid content, wherein β-carotene followed by violaxanthin were the major carotenoid compounds that increased during ripening. The red colored cultivars were characterized with higher anthocyanins with cyanidin-3-O-monoglucosides and peonidin-3-O-glucosides as the major anthocyanins. The gene expression analysis by qRT-PCR showed the higher expression of carotenoid biosynthetic genes viz. lycopene-β-cyclase and violaxanthin-de-epoxidase in yellow colored cv. Arka Anmol, and the expression was found to increase during ripening. However, in red colored cv. "Janardhan Pasand," there is increased regulation of all anthocyanin biosynthetic genes including transcription factors MYB and basic helix loop. This indicated the regulation of the anthocyanins by these genes in red mango peel. The results showed that the accumulation pattern of particular pigments and higher expression of specific biosynthetic genes in mango peel impart different colors.
Collapse
|
19
|
Ono NN, Qin X, Wilson AE, Li G, Tian L. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum). PLoS One 2016; 11:e0156319. [PMID: 27227328 PMCID: PMC4882073 DOI: 10.1371/journal.pone.0156319] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022] Open
Abstract
Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.
Collapse
Affiliation(s)
- Nadia N. Ono
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Xiaoqiong Qin
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Alexander E. Wilson
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Gang Li
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Li Tian
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
20
|
Ono NN, Qin X, Wilson AE, Li G, Tian L. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum). PLoS One 2016. [PMID: 27227328 DOI: 10.1371/journal.pgen.100156319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.
Collapse
Affiliation(s)
- Nadia N Ono
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Xiaoqiong Qin
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Alexander E Wilson
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Gang Li
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Li Tian
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Ben-Simhon Z, Judeinstein S, Trainin T, Harel-Beja R, Bar-Ya'akov I, Borochov-Neori H, Holland D. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene. PLoS One 2015; 10:e0142777. [PMID: 26581077 PMCID: PMC4651307 DOI: 10.1371/journal.pone.0142777] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/27/2015] [Indexed: 01/13/2023] Open
Abstract
Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation.
Collapse
Affiliation(s)
- Zohar Ben-Simhon
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | | - Taly Trainin
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Rotem Harel-Beja
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Irit Bar-Ya'akov
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | - Doron Holland
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
22
|
De novo sequencing transcriptome of endemic Gentiana straminea (Gentianaceae) to identify genes involved in the biosynthesis of active ingredients. Gene 2015; 575:160-70. [PMID: 26358503 DOI: 10.1016/j.gene.2015.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 08/13/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
Abstract
Gentiana straminea is a popular Tibetan medicine that has been used for thousands of years in China to treat various diseases and conditions. Although it has multiple pharmaceutical purposes and important economic plant resource in China, transcriptome and molecular base still known limited. In flowering season, samples were collected from different tissues, using the NGS Illumina. Solexa platform, about 58.85 million sequencing reads were generated and assembled de novo, yielding 78,764 high quality unigenes with an average length of 1090bp. Gene Ontology (GO), KEGG pathway mapping showed that 49,033 of these were identified as putative homologs of annotated sequences in the protein databases. Among them, candidate genes associated with iridoid, flavonoid and anthocyanin were identified. Further the key enzymes involved to iridoid and flavonoid synthesis pathway were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) on different tissues, the flower and root had the higher expression than leaves. In addition, 7591 SSR markers were identified from the unigenes of the G. straminea transcriptome. The foundation of G. straminea provided the important resource for facilitating to study molecular and functional genomics of it and related this species on the Qinghai-Tibet Plateau.
Collapse
|
23
|
Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 2015; 10:e0121164. [PMID: 25799516 PMCID: PMC4370391 DOI: 10.1371/journal.pone.0121164] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.). The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry. METHODOLOGY/PRINCIPAL FINDINGS In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE) profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT) during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40) that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights into the molecular mechanisms underlying anthocyanin biosynthesis. These results will provide a platform for further functional genomic research on this fruit crop.
Collapse
Affiliation(s)
- Hairong Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Key Laboratory for Fruit Biotechnology Breeding of Shandong, Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Xin Chen
- Key Laboratory for Fruit Biotechnology Breeding of Shandong, Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Xiaojuan Zong
- Key Laboratory for Fruit Biotechnology Breeding of Shandong, Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Huairui Shu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qingzhong Liu
- Key Laboratory for Fruit Biotechnology Breeding of Shandong, Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| |
Collapse
|
24
|
Cao H, Nuruzzaman M, Xiu H, Huang J, Wu K, Chen X, Li J, Wang L, Jeong JH, Park SJ, Yang F, Luo J, Luo Z. Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 2015; 16:3035-57. [PMID: 25642758 PMCID: PMC4346879 DOI: 10.3390/ijms16023035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/22/2015] [Indexed: 12/05/2022] Open
Abstract
The Panax ginseng C.A. Meyer belonging to the Araliaceae has long been used as an herbal medicine. Although public databases are presently available for this family, no methyl jasmonate (MeJA) elicited transcriptomic information was previously reported on this species, with the exception of a few expressed sequence tags (ESTs) using the traditional Sanger method. Here, approximately 53 million clean reads of adventitious root transcriptome were separately filtered via Illumina HiSeq™2000 from two samples treated with MeJA (Pg-MeJA) and equal volumes of solvent, ethanol (Pg-Con). Jointly, a total of 71,095 all-unigenes from both samples were assembled and annotated, and based on sequence similarity search with known proteins, a total of 56,668 unigenes was obtained. Out of these annotated unigenes, 54,920 were assigned to the NCBI non-redundant protein (Nr) database, 35,448 to the Swiss-prot database, 43,051 to gene ontology (GO), and 19,986 to clusters of orthologous groups (COG). Searching in the Kyoto encyclopedia of genes and genomes (KEGG) pathway database indicated that 32,200 unigenes were mapped to 128 KEGG pathways. Moreover, we obtained several genes showing a wide range of expression levels. We also identified a total of 749 ginsenoside biosynthetic enzyme genes and 12 promising pleiotropic drug resistance (PDR) genes related to ginsenoside transport.
Collapse
Affiliation(s)
- Hongzhe Cao
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Mohammed Nuruzzaman
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Hao Xiu
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Jingjia Huang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Kunlu Wu
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Xianghui Chen
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Jijia Li
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Li Wang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Ji-Hak Jeong
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Sun-Jin Park
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Fang Yang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Junli Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Zhiyong Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
25
|
Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. HORTICULTURE RESEARCH 2014; 1:11. [PMID: 26504533 PMCID: PMC4591669 DOI: 10.1038/hortres.2014.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 05/24/2023]
Abstract
The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., 'Regina'), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.
Collapse
Affiliation(s)
- Merianne Alkio
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Uwe Jonas
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Myriam Declercq
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Steven Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325, USA
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
26
|
Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One 2014; 9:e88998. [PMID: 24558460 PMCID: PMC3928336 DOI: 10.1371/journal.pone.0088998] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/10/2014] [Indexed: 12/31/2022] Open
Abstract
Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature.
Collapse
|
27
|
Valdés A, Ibáñez C, Simó C, García-Cañas V. Recent transcriptomics advances and emerging applications in food science. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Li C, Wang Y, Huang X, Li J, Wang H, Li J. De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics 2013; 14:552. [PMID: 23941440 PMCID: PMC3751308 DOI: 10.1186/1471-2164-14-552] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Litchi (Litchi chinensis Sonn.) is one of the most important fruit trees cultivated in tropical and subtropical areas. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying fruit set and fruit development in litchi. Shading during early fruit development decreases fruit growth and induces fruit abscission. Here, high-throughput RNA sequencing (RNA-Seq) was employed for the de novo assembly and characterization of the fruit transcriptome in litchi, and differentially regulated genes, which are responsive to shading, were also investigated using digital transcript abundance(DTA)profiling. RESULTS More than 53 million paired-end reads were generated and assembled into 57,050 unigenes with an average length of 601 bp. These unigenes were annotated by querying against various public databases, with 34,029 unigenes found to be homologous to genes in the NCBI GenBank database and 22,945 unigenes annotated based on known proteins in the Swiss-Prot database. In further orthologous analyses, 5,885 unigenes were assigned with one or more Gene Ontology terms, 10,234 hits were aligned to the 24 Clusters of Orthologous Groups classifications and 15,330 unigenes were classified into 266 Kyoto Encyclopedia of Genes and Genomes pathways. Based on the newly assembled transcriptome, the DTA profiling approach was applied to investigate the differentially expressed genes related to shading stress. A total of 3.6 million and 3.5 million high-quality tags were generated from shaded and non-shaded libraries, respectively. As many as 1,039 unigenes were shown to be significantly differentially regulated. Eleven of the 14 differentially regulated unigenes, which were randomly selected for more detailed expression comparison during the course of shading treatment, were identified as being likely to be involved in the process of fruitlet abscission in litchi. CONCLUSIONS The assembled transcriptome of litchi fruit provides a global description of expressed genes in litchi fruit development, and could serve as an ideal repository for future functional characterization of specific genes. The DTA analysis revealed that more than 1000 differentially regulated unigenes respond to the shading signal, some of which might be involved in the fruitlet abscission process in litchi, shedding new light on the molecular mechanisms underlying organ abscission.
Collapse
Affiliation(s)
- Caiqin Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Huang
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Li
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | - Huicong Wang
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jianguo Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Cui J, He P, Liu F, Tan J, Chen L, Fenn J. 60 years of development of the journal of integrative plant biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:682-702. [PMID: 22966769 DOI: 10.1111/j.1744-7909.2012.01163.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In celebration of JIPB's 60(th) anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the journal off the ground and make it successful. Academic achievement is the soul of academic journals, and this paper summarizes JIPB's course of academic development by analyzing it in four stages: the first two stages are mostly qualitative analyses, and the latter two stages are dedicated to quantitative analyses. Most-cited papers were statistically analyzed. Improvements in editing, publication, distribution and online accessibility--which are detailed in this paper--contribute to JIPB's sustainable development. In addition, JIPB's evaluation index and awards are provided with accompanying pictures. At the end of the paper, JIPB's milestones are listed chronologically. We believe that JIPB's development, from a national journal to an international one, parallels the development of the Chinese plant sciences.
Collapse
|
30
|
Ono NN, Bandaranayake PCG, Tian L. Establishment of pomegranate (Punica granatum) hairy root cultures for genetic interrogation of the hydrolyzable tannin biosynthetic pathway. PLANTA 2012; 236:931-41. [PMID: 22810948 DOI: 10.1007/s00425-012-1706-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/02/2012] [Indexed: 05/24/2023]
Abstract
In contrast to the numerous reports on the human therapeutic applications of hydrolyzable tannins (HTs), genes involved in their biosynthesis have not been identified at the molecular level from any plant species. Although we have previously identified candidate HT biosynthetic genes in pomegranate using transcriptomic and bioinformatic analyses, characterization of in planta enzyme function remains a critical step in biochemical pathway elucidation. We here report the establishment of a pomegranate (Punica granatum) hairy root culture system that produces HTs. Agrobacterium rhizogenes strains transformed with a binary vector harboring a yellow fluorescent protein (YFP) gene were used for hairy root induction, allowing visual, non-destructive, detection of transgene incorporation. It also demonstrated that the pomegranate hairy root culture system is suitable for expressing heterologous genes (YFP in this case). Expression of 26 putative UDP-glycosyltransferase (UGT) genes, obtained from a pomegranate fruit peel (a tissue highly abundant in HTs) RNA-Seq library, were verified in wild type and hairy roots. In addition, two candidate UGTs for HT biosynthesis were identified based on HPLC and differential gene expression analyses of various pomegranate tissues. Together with in vitro enzyme activity assays, the hairy root culture system holds great promise for revealing the undivulged HT biosynthetic pathway using pomegranate as a model system.
Collapse
Affiliation(s)
- Nadia N Ono
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, Davis, CA, USA
| | | | | |
Collapse
|