1
|
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants. ANNALS OF BOTANY 2023; 131:387-409. [PMID: 36656070 PMCID: PMC10072107 DOI: 10.1093/aob/mcad001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Elizabeth Blée
- Former Head of Phyto-oxylipins laboratory, Institute of Plant Molecular Biology, University of Strasbourg, France
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Treforest, UK
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
2
|
Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, Fischer AM, Fluhr R. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6816-6837. [PMID: 35918065 DOI: 10.1093/jxb/erac329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a developmental process allowing nutrient remobilization to sink organs. We characterized flag leaf senescence at 7, 14, and 21 d past anthesis in two near-isogenic barley lines varying in the allelic state of the HvNAM1 transcription factor gene, which influences senescence timing. Metabolomics and microscopy indicated that, as senescence progressed, thylakoid lipids were transiently converted to neutral lipids accumulating in lipid droplets. Senescing leaves also exhibited an accumulation of sugars including glucose, while nitrogen compounds (nucleobases, nucleotides, and amino acids) decreased. RNA-Seq analysis suggested lipid catabolism via β-oxidation and the glyoxylate cycle, producing carbon skeletons and feeding respiration as a replacement of the diminished carbon supply from photosynthesis. Comparison of the two barley lines highlighted a more prominent up-regulation of heat stress transcription factor- and chaperone-encoding genes in the late-senescing line, suggesting a role for these genes in the control of leaf longevity. While numerous genes with putative roles in nitrogen remobilization were up-regulated in both lines, several peptidases, nucleases, and nitrogen transporters were more highly induced in the early-senescing line; this finding identifies processes and specific candidates which may affect nitrogen remobilization from senescing barley leaves, downstream of the HvNAM1 transcription factor.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kendra Hertweck
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Zeng X, Jiang J, Wang F, Liu W, Zhang S, Du J, Yang C. Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:52-61. [PMID: 34694678 DOI: 10.1111/plb.13350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Caleosin is a lipid droplet-binding protein involved in maintenance of the lipid droplet structure and in signal transduction. However, the role of caleosin proteins in stress resistance is limited. Here, we report data for a rice caleosin protein gene, OsClo5, involved in cold stress tolerance via influence and regulation of the JA signalling pathway. Overexpression lines and RNAi lines of OsClo5 were subjected to cold stress and recovery to measure electrolyte leakage and survival rate. Changes were also detected in the genome-wide transcriptome of OsClo5 overexpressed plants. OsClo5 is located mainly in lipid droplets and expressed in all tissues tested. Its expression was upregulated by various stress conditions when subjected to cold treatment. Overexpression of OsClo5 decreased cold tolerance, and RNAi lines of OsClo5 had higher survival than WT seedlings. OsClo5 inhibited one jasmonate biosynthetic gene and several jasmonate ZIM domain (JAZ) genes, which were upregulated in response to cold stress. OsClo5 is a constitutively expressed caleosin protein that regulates plant cold resistance through inhibition of jasmonate signalling and JA synthesis.
Collapse
Affiliation(s)
- X Zeng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - J Jiang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - F Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - W Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - S Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - J Du
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - C Yang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
De Caroli M, Barozzi F, Renna L, Piro G, Di Sansebastiano GP. Actin and Microtubules Differently Contribute to Vacuolar Targeting Specificity during the Export from the ER. MEMBRANES 2021; 11:membranes11040299. [PMID: 33924184 PMCID: PMC8074374 DOI: 10.3390/membranes11040299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins’ functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.
Collapse
Affiliation(s)
- Monica De Caroli
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Fabrizio Barozzi
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Luciana Renna
- Department of Biology, University of Florence, 50121 Firenze, Italy;
| | - Gabriella Piro
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Gian-Pietro Di Sansebastiano
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Correspondence: ; Tel.: +39-0832-298-714
| |
Collapse
|
5
|
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:894. [PMID: 28611809 PMCID: PMC5447075 DOI: 10.3389/fpls.2017.00894] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER.
Collapse
Affiliation(s)
- Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420 Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Françoise Immel
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Denis Coulon
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- Bordeaux INPTalence, France
| | - Nicolas Esnay
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Karine Tuphile
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphanie Pascal
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphane Claverol
- Proteome Platform, Functional Genomic Center of Bordeaux, University of BordeauxBordeaux, France
| | - Laëtitia Fouillen
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Claire Bréhélin
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- *Correspondence: Claire Bréhélin
| |
Collapse
|
6
|
Zhang Z, Cheng ZJ, Gan L, Zhang H, Wu FQ, Lin QB, Wang JL, Wang J, Guo XP, Zhang X, Zhao ZC, Lei CL, Zhu SS, Wang CM, Wan JM. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:35-45. [PMID: 27297988 DOI: 10.1016/j.plantsci.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 05/11/2023]
Abstract
Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism.
Collapse
Affiliation(s)
- Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Jun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fu-Qing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi-Bing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiu-Ping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Chao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cai-Lin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shan-Shan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chun-Ming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
8
|
Bettini S, Santino A, Giancane G, Valli L. Reconstituted oil bodies characterization at the air/water and at the air/oil/water interfaces. Colloids Surf B Biointerfaces 2014; 122:12-18. [DOI: 10.1016/j.colsurfb.2014.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022]
|
9
|
López-Ribera I, La Paz JL, Repiso C, García N, Miquel M, Hernández ML, Martínez-Rivas JM, Vicient CM. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. PLANT PHYSIOLOGY 2014; 164:1237-49. [PMID: 24406791 PMCID: PMC3938616 DOI: 10.1104/pp.113.233221] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
A transcriptomic approach has been used to identify genes predominantly expressed in maize (Zea mays) scutellum during maturation. One of the identified genes is oil body associated protein1 (obap1), which is transcribed during seed maturation predominantly in the scutellum, and its expression decreases rapidly after germination. Proteins similar to OBAP1 are present in all plants, including primitive plants and mosses, and in some fungi and bacteria. In plants, obap genes are divided in two subfamilies. Arabidopsis (Arabidopsis thaliana) genome contains five genes coding for OBAP proteins. Arabidopsis OBAP1a protein is accumulated during seed maturation and disappears after germination. Agroinfiltration of tobacco (Nicotiana benthamiana) epidermal leaf cells with fusions of OBAP1 to yellow fluorescent protein and immunogold labeling of embryo transmission electron microscopy sections showed that OBAP1 protein is mainly localized in the surface of the oil bodies. OBAP1 protein was detected in the oil body cellular fraction of Arabidopsis embryos. Deletion analyses demonstrate that the most hydrophilic part of the protein is responsible for the oil body localization, which suggests an indirect interaction of OBAP1 with other proteins in the oil body surface. An Arabidopsis mutant with a transfer DNA inserted in the second exon of the obap1a gene and an RNA interference line against the same gene showed a decrease in the germination rate, a decrease in seed oil content, and changes in fatty acid composition, and their embryos have few, big, and irregular oil bodies compared with the wild type. Taken together, our findings suggest that OBAP1 protein is involved in the stability of oil bodies.
Collapse
|
10
|
Paul LK, Rinne PLH, van der Schoot C. Refurbishing the plasmodesmal chamber: a role for lipid bodies? FRONTIERS IN PLANT SCIENCE 2014; 5:40. [PMID: 24605115 PMCID: PMC3932414 DOI: 10.3389/fpls.2014.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/28/2014] [Indexed: 05/04/2023]
Abstract
Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are produced by specialized membrane domains at the tubular endoplasmic reticulum (ER), and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signaling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM). Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD) channel. We hypothesize that this may represent a more general mechanism, which complements the delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.
Collapse
Affiliation(s)
| | | | - Christiaan van der Schoot
- *Correspondence: Christiaan van der Schoot, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway e-mail:
| |
Collapse
|
11
|
Stigliano E, Faraco M, Neuhaus JM, Montefusco A, Dalessandro G, Piro G, Di Sansebastiano GP. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:337-43. [PMID: 24184454 DOI: 10.1016/j.plaphy.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/10/2013] [Indexed: 05/02/2023]
Abstract
Vacuolar Sorting Determinants (VSDs) have been extensively studied in plants but the mechanisms for the accumulation of storage proteins in somatic tissues are not yet fully understood. In this work we used two mutated versions of well-documented vacuolar fluorescent reporters, a GFP fusion in frame with the C-terminal VSD of tobacco chitinase (GFPChi) and an N-terminal fusion in frame with the sequence-specific VSD of the barley cysteine protease aleurain (AleuGFP). The GFP sequence was mutated to present an N-glycosylation site at the amino-acid position 133. The reporters were transiently expressed in Nicotiana tabacum protoplasts and agroinfiltrated in Nicotiana benthamiana leaves and their distribution was identical to that of the non-glycosylated versions. With the glycosylated GFPs we could highlight a differential ENDO-H sensitivity and therefore differential glycan modifications. This finding suggests two different and independent routes to the vacuole for the two reporters. BFA also had a differential effect on the two markers and further, inhibition of COPII trafficking by a specific dominant-negative mutant (NtSar1h74l) confirmed that GFPChi transport from the ER to the vacuole is not fully dependent on the Golgi apparatus.
Collapse
Affiliation(s)
- Egidio Stigliano
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland; CNR-IGV, Institute of Plant Genetics, Thematic Center for the Preservation of Mediterranean Plant Biodiversity, via Nazionale 44, 75025 Policoro, MT, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Li M, Zhao M, Wu H, Wu W, Xu Y. Cloning, characterization and functional analysis of two type 1 diacylglycerol acyltransferases (DGAT1s) from Tetraena mongolica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:490-503. [PMID: 23480422 DOI: 10.1111/jipb.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
Two cDNAs encoding putative type 1 acyl-CoA: diacylglycerol acyltransferases (DGAT1, EC 2.3.1.20), were cloned from Tetraena mongolica, an extreme xerophyte with high oil content in the stems. The 1 488-bp and 1 485-bp of the open reading frame (ORF) of the two cDNAs, designated as TmDGAT1a and TmDGAT1b, were both predicted to encode proteins of 495 and 494 amino acids, respectively. Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T. mongolica genome. In addition to ubiquitous expression with different intensity in different tissues, including stems, leaves and roots, TmDGAT1a and TmDGAT1b, were found to be strongly induced by high salinity, drought and osmotic stress, resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T. mongolica plantlets. TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1, LRO1, ARE1, ARE2) by restoring DGAT activity of the mutant host to produce TAG. Overexpression of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T. mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%), accompanied by altered fatty acid profiles.
Collapse
Affiliation(s)
- Minchun Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
13
|
Abstract
Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin- and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.
Collapse
Affiliation(s)
- Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
14
|
Parthibane V, Iyappan R, Vijayakumar A, Venkateshwari V, Rajasekharan R. Serine/threonine/tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. PLANT PHYSIOLOGY 2012; 159:95-104. [PMID: 22434039 PMCID: PMC3375988 DOI: 10.1104/pp.112.197194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca(2+) inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.
Collapse
|
15
|
Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. J Lipid Res 2012; 53:215-26. [PMID: 22045929 PMCID: PMC3269164 DOI: 10.1194/jlr.r021436] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/31/2011] [Indexed: 12/22/2022] Open
Abstract
The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved.
Collapse
Affiliation(s)
- Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX
| | - John M. Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|