1
|
Dong M, Ming X, Xiang T, Feng N, Zhang M, Ye X, He Y, Zhou M, Wu Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: a comprehensive review. Food Funct 2024; 15:8973-8997. [PMID: 39189379 DOI: 10.1039/d4fo02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Quinones represent a class of crude organic compounds ubiquitously distributed in nature. Their distinctive quinone-type structure confers upon them unique properties and applications. Quinones demonstrate significant biological activities, including antioxidant, antimicrobial, and antitumor properties. Additionally, they demonstrate noteworthy physicochemical characteristics, including excellent dyeing properties and stability. Given their diverse qualities, quinones hold significant promise for applications in industrial manufacturing, healthcare, and food production, thus garnering considerable attention in recent years. While there is a growing body of research on quinones, the existing literature falls short of providing a comprehensive review encompassing recent advancements in this field along with established knowledge. This paper offers a comprehensive review of research progress for quinones, encompassing structural classification, source synthesis, extraction methods, properties, functions, and specific applications. It serves as a reference and theoretical foundation for the further development and utilization of quinones.
Collapse
Affiliation(s)
- Mingyu Dong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xiaozhi Ming
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Tianyu Xiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Mengyun Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xurui Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Yi He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
- Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang 310058, P. R. China
| |
Collapse
|
2
|
Ping BTY, Idris CAC, Maurad ZA. Oxidative Stability of Refined Red Palm Olein under two Malaysian Storage Conditions. J Oleo Sci 2020; 69:1209-1218. [PMID: 32908090 DOI: 10.5650/jos.ess20045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Refined red palm olein (RPOo) is the first cooking oil that is a pro-Vitamin A source due to its high carotenoid concentration. The quality specifications from the manufacturers are usually applied to freshly produced oil. However, there is currently no information regarding the oxidative stability and phytonutrient content (Vitamin E and Carotene) for RPOo after prolonged storage time. The objective then is to study the effect of two local storage conditions and storage period(s) on the oxidative stability of RPOo. In this study, peroxide value (PV), p-anisidine value (AnV), induction period (IP), free fatty acid (FFA), and Vitamin E content were determined periodically for twelve months under local storage conditions (supermarket and kitchen). Carotene content, however, was determined only at initial and at the 12th month of storage time periods. It was found that there was an overall progressive but slow increase in PV and p-AnV. For PV, the storage effects were inconsistent. However, the effects were significant (p < 0.01) on the AnV throughout storage. At the end of the 12-months, for both storage conditions, the PV < 10 meq O2 g-1, the AnV < 10, the FFA < 0.2 % (palmitic acid), with a 30% drop in the total Vitamin E, and carotenoids content showed no significant drop (p < 0.01). The PV and AnV were also within Codex Alimentarius' recommended limits. Finally, the oxidative parameters showed that RPOo remains stable after year storage under the two simulated local storage conditions (the aforementioned supermarket and kitchen).
Collapse
|
3
|
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 2020; 29:149-168. [PMID: 32064124 PMCID: PMC6992823 DOI: 10.1007/s10068-019-00731-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
The food and beverage industry often need to encapsulate hydrophobic functional ingredients in their products, including colors, flavors, lipids, nutraceuticals preservatives, and vitamins. Encapsulation can improve the handling, water-dispersibility, chemically stability, and efficacy of these functional ingredients. In this review article, we focus on the design of nanoemulsion-based delivery systems to encapsulate, protect, and deliver non-polar bioactive agents, such as vitamin A, D and E, β-carotene, lycopene, lutein, curcumin, resveratrol, and coenzyme Q10. Initially, the challenges associated with incorporating these different bioactives into foods are highlighted. The relative merits and drawbacks of different nanoemulsion fabrication methods are then discussed. Finally, examples of the application of nanoemulsions for improving the stability and bioavailability of various kinds of hydrophobic vitamins and nutraceuticals are provided.
Collapse
Affiliation(s)
- Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Departement of Interdisciplinary Bio IT Materials, Seoul National University of Science and
Technology, Seoul, 01811 Republic of Korea
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003 USA
- Department of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
4
|
Zuleta EC, Goenaga GA, Zawodzinski TA, Elder T, Bozell JJ. Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02040c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Those features which enhance the reactivity of Co-Schiff base oxidation catalysts can also contribute to their demise.
Collapse
Affiliation(s)
- Ernesto C. Zuleta
- Center for Renewable Carbon
- University of Tennessee
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| | - Gabriel A. Goenaga
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| | - Thomas A. Zawodzinski
- Bredesen Center for Interdisciplinary Research and Education
- Knoxville
- USA
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
| | | | - Joseph J. Bozell
- Center for Renewable Carbon
- University of Tennessee
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| |
Collapse
|
5
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|