1
|
Yepes-Betancur DP, Zapata-Vahos IC, Henao-Rojas JC, Martinez-Saldarriaga J, Márquez-Cardozo CJ, Cadena-Chamorro EM. Inhibitory effect of fermented avocado seed extract ( Persea americana Mill. cv. Hass) on polyphenol oxidase and its application as anti-browning agent in avocado, apple, and banana pulps. Heliyon 2025; 11:e42588. [PMID: 40034293 PMCID: PMC11874750 DOI: 10.1016/j.heliyon.2025.e42588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/25/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
Antioxidant components of avocado seed can be used to prevent browning caused by polyphenol oxidase (PPO). This research evaluated the inhibitory effect of avocado seed extract obtained through solid state fermentation on PPO and assessed the anti-browning performance of this extract on avocado, banana, and apple pulp in comparison to ascorbic acid and L-Cysteine. The Km and Vmax kinetic parameters of avocado PPO, using catechol as substrate, were 0.1627 g/L and 0.6577 Abs/min, respectively. The fermented extract completely inhibited the enzyme at 60 % v/v, likewise, the type of competitive inhibition of the fermented extract was determined by the Lineweaver-Burk method. Additionally, fermented extract effectively delayed browning in avocado, and banana at 0.5 % v/v and 1.0 % v/v in apple, the effect is linked to the presence of bioactive compounds as potential inhibitors capable of retarding the darkening. Mathematical modeling of enzyme inhibition was performed and it was found self-inhibition is present in most cases. In conclusion, fermented avocado seed extract is a potential product to protect other foodstuffs from oxidation in the food industry.
Collapse
Affiliation(s)
- Diana Paola Yepes-Betancur
- Servicio Nacional de Aprendizaje, SENA, Grupo de Investigación en Innovación y Agroindustria, Centro de la Innovación, la Agroindustria y la Aviación, Cra 48 # 49-62, Rionegro, 054040, Colombia
| | - Isabel Cristina Zapata-Vahos
- Facultad de Ciencias de la Salud, Grupo de Investigación Atención Primaria en Salud, Universidad Católica de Oriente, Rionegro, 054040, Colombia
| | - Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro, 054048, Colombia
| | - Jaison Martinez-Saldarriaga
- Grupo de Investigación en Ingeniería Agrícola. Escuela de Biociencias. Universidad Nacional de Colombia, AA 3840, Medellín, Colombia
| | - Carlos Julio Márquez-Cardozo
- Grupo de Investigación en Ingeniería Agrícola. Escuela de Biociencias. Universidad Nacional de Colombia, AA 3840, Medellín, Colombia
| | - Edith Marleny Cadena-Chamorro
- Grupo de Investigación en Ingeniería Agrícola. Escuela de Biociencias. Universidad Nacional de Colombia, AA 3840, Medellín, Colombia
| |
Collapse
|
2
|
Guo X, Li Q, Luo T, Xu D, Zhu D, Li J, Han D, Wu Z. Zinc Oxide Nanoparticles Treatment Maintains the Postharvest Quality of Litchi Fruit by Inducing Antioxidant Capacity. Foods 2024; 13:3357. [PMID: 39517141 PMCID: PMC11545015 DOI: 10.3390/foods13213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pericarp browning and fruit decay severely reduce the postharvest quality of litchi. Improving the antioxidant capacity of the fruit is an effective way to solve these problems. In our study, the appropriate zinc oxide nanoparticles (ZnO NPs) treatment and its mechanism of action on the storability of litchi was investigated. Litchi fruit was soaked in a 100 mg·L-1 ZnO NPs suspension, water, and 500 mg·L-1 prochloraz for 2 min, respectively. The results showed that the ZnO NPs treatment delayed pericarp browning and decay in litchi fruit and was more effective than prochloraz treatment. The ZnO NPs-treated fruit showed significantly increased contents of total anthocyanin, total phenols, and activities of DPPH scavenging, superoxide dismutase, and glutathione peroxidase, as well as the lowest activities of polyphenol oxidase and laccase. ZnO NPs generated hydrogen peroxide and superoxide anion radicals, which were beneficial in slowing down the decay and inducing antioxidant capacity. However, these reactive oxygen species also consumed catalase, peroxidase, glutathione, and glutathione peroxidase. This means that litchi should be treated with an appropriate concentration of ZnO NPs. We concluded that treatment with a 100 mg·L-1 ZnO NPs suspension could induce antioxidant capacity, which is a promising and effective method to maintain the postharvest quality of litchi.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering, Hezhou University, Hezhou 542899, China;
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Qiao Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Tao Luo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Dandan Xu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Difa Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Jingyi Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Zhenxian Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| |
Collapse
|
3
|
Dong Y, Zhong W, Yang C, Zhang Y, Yang D. Study on anthocyanins from Lycium ruthenicum Murr via ultrasonic microwave synergistic extraction and its antioxidant properties. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1052499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objectives of this study are to optimize the ultrasonic microwave synergistic extraction (UMSE) of anthocyanins from Lycium ruthenicum Murr (ALRM) by response surface methodology and also to investigate its antioxidant activity in vitro. Based on the single-factor experiments, we optimized the ALRM extraction process by response surface methodology assuming anthocyanin extraction rate as the response point and microwave power, ultrasonic power, extraction time, and liquid-to-material ratio as the investigating parameters as well as performed correlation analysis between DPPH·, ·OH, ABTS·, O2-· radical scavenging potential, and ferric-reducing antioxidant power. The results showed that the influence on anthocyanin yield was in the order of liquid to material ratio > microwave power > ultrasonic power > extraction time; the elicited extraction conditions were: ultrasonic power 216.253 W, microwave power 89.311 W, time 26.141 min, liquid to material ratio 17.294 mL/g, the forecast content was 10.157 mg/g, while the actual value was consistent with the preview value. Meanwhile, ALRM obtainable by UMSE was identified as yielding favorable antioxidant properties firstly, when the concentration of purified ALRM (ALRM-1) was increased, the antioxidant capacity was strengthened. Theoretically, we provide a basis for the extraction procedure of ALRM and its antioxidant activity, which serves as a promising antioxidant and free radical scavenger.
Collapse
|
4
|
Hou D, Feng Q, Tang J, Shen Q, Zhou S. An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:1960-1982. [PMID: 35930027 DOI: 10.1080/10408398.2022.2105303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulses, as a sustainable source of nutrients, are an important choice for human diets, but vast quantities of seed coats generated in pulses processing are usually discarded or used as low-value ruminant feed. It has been demonstrated that pulses seed coats are excellent sources of dietary nutrients and phytochemicals with potential health benefits. With growing interest in the sustainable use of resources and the circular economy, utilization of pulses seed coats to recover these valuable components is a core objective for their valorization and an important step toward agricultural sustainability. This review comprehensively provides a comprehensive insight on the nutritional and phytochemical profiles presented in pulses seed coats and their health benefits obtained from the findings of in vitro and in vivo studies. Furthermore, in the food industry, pulses seed coats can be acted as potential food ingredients with nutritional, antioxidant and antimicrobial characteristics or as the matrix or active components of films for food packaging and edible coatings. A better understanding of pulses seed coats may provide a reference for increasing the overall added value and realizing the pulses' sustainable diets.
Collapse
Affiliation(s)
- Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Xiong R, Wang XL, Wu JM, Tang Y, Qiu WQ, Shen X, Teng JF, Pan R, Zhao Y, Yu L, Liu J, Chen HX, Qin DL, Yu CL, Wu AG. Polyphenols isolated from lychee seed inhibit Alzheimer's disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112548. [PMID: 31917277 DOI: 10.1016/j.jep.2020.112548] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-β (Aβ) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. AIM OF THE STUDY The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. MATERIALS AND METHODS The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3β, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. RESULTS After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3β. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. CONCLUSIONS catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3β pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Rui Xiong
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiu-Ling Wang
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Jian-Ming Wu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yong Tang
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Wen-Qiao Qiu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xin Shen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jin-Feng Teng
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Rong Pan
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ya Zhao
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Lu Yu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Liu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Hai-Xia Chen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Da-Lian Qin
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - An-Guo Wu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Effect of tea polyphenols on lipid peroxidation and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit during cold storage. Molecules 2014; 19:16837-50. [PMID: 25335111 PMCID: PMC6271257 DOI: 10.3390/molecules191016837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 11/17/2022] Open
Abstract
To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.− production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.− production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.
Collapse
|
7
|
Sommano S, Caffin N, Kerven G. Screening for Antioxidant Activity, Phenolic Content, and Flavonoids from Australian Native Food Plants. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.580485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Altunkaya A. Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca Sativa). Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
CHENG G, JIANG Y, DUAN X, MACNISH A, YOU Y, LI YUEBIAO. EFFECT OF OXYGEN CONCENTRATION ON THE BIOCHEMICAL AND CHEMICAL CHANGES OF STORED LONGAN FRUIT. J FOOD QUALITY 2009. [DOI: 10.1111/j.1745-4557.2008.00232.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|