1
|
Labu ZK, Karim S, Rahman MT, Hossain MI, Arifuzzaman S, Shakil M. Assessment of phytochemical screening, antibacterial, analgesic, and antipyretic potentials of Litsea glutinosa (L.) leaves extracts in a mice model. PLoS One 2025; 20:e0309857. [PMID: 39888966 PMCID: PMC11785304 DOI: 10.1371/journal.pone.0309857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND Litsea glutinosa (LG) leaves have been traditionally used in ethnomedicine for the treatment of various ailments, including pain, fever, and microbial infections. This study aims to scientifically evaluate the therapeutic potential of cold methanol extracts of LG leaves, specifically focusing on their analgesic, antipyretic, and antibacterial activities. In addition, the research includes preliminary phytochemical screening to identify key bioactive compounds and an acute toxicity test to assess the safety profile of the extract. METHODS In this study, we conducted an initial investigation of the major phytochemical groups present in L. glutinosa leaves using both modern chromatographic techniques, specifically High-Performance Liquid Chromatography (HPLC), and conventional phytochemical screening methods applied to cold methanol extracts. Both approaches consistently identified phenols and flavonoids as the predominant bioactive compounds. Following this phytochemical characterization, we assessed the analgesic efficacy of the extracts using acetic acid-induced writhing and electrical heat-induced nociceptive pain stimuli, evaluated antipyretic effects through Brewer's yeast-induced pyrexia, and determined antibacterial activity via the disc diffusion method. Additionally, the toxicity of the extracts was evaluated through preclinical testing. RESULTS In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (3.37 ± 0.31 sec) which differed significantly (P < 0.01 and P < 0.001) with that of the standard drug morphine (6.47 ± 0.23 sec). The extract significantly prolonged reaction latency to thermal-induced pain in hotplate model. Analgesic activity at 500 mg/kg, LG extract produced a 70% suppression of writhing in mice, which was statistically significant (p < 0.001) compared to standard morphine's (77.5%) inhibition. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (36.17 ± 0.32 °C) at dose of 300 mg/kg-body weight, when the standard (at dose 100 mg/kg-body weight) exerted (36.32 ± 0.67 °C) after 3 h of administration. In antibacterial studies, results showed that inhibition of bacterial growth at 400 μg dose of each extract clearly inhibited growth of bacteria from 11 to 22 mm. The extractives carbon tetrachloride fraction, chloroform soluble fraction, ethyl acetate fraction demonstrated notably greater inhibitory zone widths (p < 0.05) against tested strains. CONCLUSION Overall, the cold methanol extract of LG leaves demonstrates the therapeutic potential in preclinical settings. Future research is warranted to isolate the specific bioactive compounds and elucidate their mechanisms of action to further support the development of new treatments and contributing to modern medicinal practices based on this plant leaves.
Collapse
Affiliation(s)
- Zubair Khalid Labu
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Samira Karim
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Md. Tarekur Rahman
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Md. Imran Hossain
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Sarder Arifuzzaman
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Md. Shakil
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
2
|
Liu Q, Wang YX, Ge ZH, Zhu MZ, Ding J, Wang H, Liu SM, Liu RC, Li C, Yu MJ, Feng Y, Zhu XH, Liang JH. Discovery of glycosidated glycyrrhetinic acid derivatives: Natural product-based soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 280:116937. [PMID: 39413443 DOI: 10.1016/j.ejmech.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
There are few reports on soluble epoxide hydrolase (sEH) structure-activity relationship studies using natural product-based scaffolds. In this study, we discovered that C-30 urea derivatives of glycyrrhetinic acid such as 33, rather than C-20/C-3 urea derivatives, possess in vitro sEH inhibitory capabilities. Furthermore, we explored the impact of stereoconfigurations at C-3 and C-18 positions, and glycosidic bonds at the 3-OH on the compound's activity. Consequently, a glycoside of 33, specifically 49Cα containing alpha-oriented mannose, exhibited promising in vivo efficacy in alleviating carrageenan-induced paw edema and acetic acid-induced writhing. Meanwhile, 49Cα demonstrated potential in mitigating acute pancreatitis by modulating the ratios of anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory dihydroxyeicosatrienoic acids (DHETs). The co-crystal structure of sEH in complex with 49Cα revealed that the N-tetrahydropyranylmethylene urea hydrogen bonded with the residues within the sEH tunnel, contrasting with the mannose component that extended beyond the tunnel's confines. Our findings highlight 49Cα (coded LQ-38) as a promising candidate for anti-inflammatory and analgesic effects, and pave the way for the future rational design of triterpenoid-based sEH inhibitors.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yi-Xin Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Zi-Hao Ge
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
3
|
Lees P, Toutain PL, Elliott J, Giraudel JM, Pelligand L, King JN. Pharmacology, safety, efficacy and clinical uses of the COX-2 inhibitor robenacoxib. J Vet Pharmacol Ther 2022; 45:325-351. [PMID: 35460083 PMCID: PMC9541287 DOI: 10.1111/jvp.13052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
Abstract
Robenacoxib is a veterinary‐approved non‐steroidal anti‐inflammatory drug (NSAID) of the coxib group. It possesses anti‐hyperalgesic, anti‐inflammatory and anti‐pyretic properties. Robenacoxib inhibits the cyclooxygenase (COX)‐2 isoform of COX selectively (in vitro IC50 ratios COX‐1:COX‐2, 129:1 in dogs, 32:1 in cats). At registered dosages (2 mg/kg subcutaneously in dogs and cats, 1–4 mg/kg orally in dogs and 1–2.4 mg/kg orally in cats), robenacoxib produces significant inhibition of COX‐2 whilst sparing COX‐1. The pharmacokinetic (PK) profile of robenacoxib is characterized by a high degree of binding to plasma proteins (>98%) and moderate volume of distribution (at steady state, 240 ml/kg in dogs and 190 ml/kg in cats). In consequence, the terminal half‐life in blood (<2 h) is short, despite moderate body clearance (0.81 L/kg/h) in dogs and low clearance (0.44 L/kg/h) in cats. Excretion is principally in the bile (65% in dogs and 72% in cats). Robenacoxib concentrates in inflamed tissues, and clinical efficacy is achieved with once‐daily dosing, despite the short blood terminal half‐life. In dogs, no relevant breed differences in robenacoxib PK have been detected. Robenacoxib has a wide safety margin; in healthy laboratory animals daily oral doses 20‐fold (dog, 1 month), eight‐fold (cat, 6 weeks) and five‐fold (dog, 6 months) higher than recommended clinical doses were well tolerated. Clinical efficacy and safety have been demonstrated in orthopaedic and soft tissue surgery, and in musculoskeletal disorders in dogs and cats.
Collapse
Affiliation(s)
- Peter Lees
- Royal Veterinary College, University of London, London, UK
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK.,INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
4
|
Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET Imaging of Neuroinflammation Targeting COX-2 Enzyme. Molecules 2021; 26:molecules26113208. [PMID: 34071951 PMCID: PMC8198977 DOI: 10.3390/molecules26113208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation and cyclooxygenase-2 (COX-2) upregulation are associated with the pathogenesis of degenerative brain diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), epilepsy, and a response to traumatic brain injury (TBI) or stroke. COX-2 is also induced in acute pain, depression, schizophrenia, various cancers, arthritis and in acute allograft rejection. Positron emission tomography (PET) imaging allows for the direct measurement of in vivo COX-2 upregulation and thereby enables disease staging, therapy evaluation and aid quantifying target occupancy of novel nonsteroidal anti-inflammatory drugs or NSAIDs. Thus far, no clinically useful radioligand is established for monitoring COX-2 induction in brain diseases due to the delay in identifying qualified COX-2-selective inhibitors entering the brain. This review examines radiolabeled COX-2 inhibitors reported in the past decade and identifies the most promising radioligands for development as clinically useful PET radioligands. Among the radioligands reported so far, the three tracers that show potential for clinical translation are, [11CTMI], [11C]MC1 and [18F]MTP. These radioligands demonstrated BBB permeablity and in vivo binding to constitutive COX-2 in the brain or induced COX-2 during neuroinflammation.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Correspondence:
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
5
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
6
|
Medeiros P, Dos Santos IR, Medeiros AC, da Silva JA, Ferreira SH, de Freitas RL, Coimbra NC. Indomethacin attenuates mechanical allodynia during the organization but not the maintenance of the peripheral neuropathic pain induced by nervus ischiadicus chronic constriction injury. ACTA ACUST UNITED AC 2020; 53:e9255. [PMID: 32348427 PMCID: PMC7205414 DOI: 10.1590/1414-431x20209255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
The neurochemical mechanisms underlying neuropathic pain (NP) are related to peripheral and central sensitization caused by the release of inflammatory mediators in the peripheral damaged tissue and ectopic discharges from the injured nerve, leading to a hyperexcitable state of spinal dorsal horn neurons. The aim of this work was to clarify the role played by cyclooxygenase (COX) in the lesioned peripheral nerve in the development and maintenance of NP by evaluating at which moment the non-steroidal anti-inflammatory drug indomethacin, a non-selective COX inhibitor, attenuated mechanical allodynia after placing one loose ligature around the nervus ischiadicus, an adaptation of Bennett and Xie's model in rodents. NP was induced in male Wistar rats by subjecting them to chronic constriction injury (CCI) of the nervus ischiadicus, placing one loose ligature around the peripheral nerve, and a sham surgery (without CCI) was used as control. Indomethacin (2 mg/kg) or vehicle was intraperitoneally and acutely administered in each group of rats and at different time windows (1, 2, 4, 7, 14, 21, and 28 days) after the CCI or sham surgical procedures, followed by von Frey's test for 30 min. The data showed that indomethacin decreased the mechanical allodynia threshold of rats on the first, second, and fourth days after CCI (P<0.05). These findings suggested that inflammatory mechanisms are involved in the induction of NP and that COX-1 and COX-2 are involved in the induction but not in the maintenance of NP.
Collapse
Affiliation(s)
- P Medeiros
- Laboratório de Neurociências da Dor & Emoções, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - I R Dos Santos
- Laboratório de Dor e Imflamação, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A C Medeiros
- Laboratório de Neurociências da Dor & Emoções, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J A da Silva
- Departamento de Psicologia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - S H Ferreira
- Laboratório de Dor e Imflamação, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - R L de Freitas
- Laboratório de Neurociências da Dor & Emoções, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N C Coimbra
- Laboratório de Neurociências da Dor & Emoções, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
7
|
Rakib A, Ahmed S, Islam MA, Haye A, Uddin SMN, Uddin MMN, Hossain MK, Paul A, Emran TB. Antipyretic and hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in silico approaches. Food Sci Nutr 2020; 8:547-556. [PMID: 31993178 PMCID: PMC6977484 DOI: 10.1002/fsn3.1339] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
This research describes an investigation of the antipyretic and hepatoprotective properties of both a crude organic extract and various subfractions of the ethnomedicinal plant Tinospora crispa, using appropriate animal models. In an attempt to identify potential lead hepatoprotective compounds, in silico experiments were utilized. Antipyretic activity was assessed via the Brewer's yeast-induced pyrexia method, while hepatoprotective effects were evaluated in a carbon tetrachloride (CCl4)-induced animal model. A computer-aided prediction of activity spectra for substances (PASS) model was applied to a selection of documented phytoconstituents, with the aim of identifying those compounds with most promising hepatoprotective effects. Results were analyzed using Molinspiration software. Our results showed that both the methanol extract (METC) and various subfractions (pet ether, PEFTC; n-hexane, NHFTC; and chloroform, CFTC) significantly (p < .05) reduced pyrexia in a dose-dependent manner. In CCl4-induced hepatotoxicity studies, METC ameliorated elevated hepatic markers including serum alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), and total bilirubin. Malondialdehyde (MDA) levels were significantly reduced, while superoxide dismutase (SOD) levels were significantly increased. Among a selection of metabolites of T. crispa, genkwanin was found to be the most potent hepatoprotective constituent using PASS predictive models. These results demonstrate that both the methanolic extract of T. crispa and those fractions containing genkwanin may offer promise in reducing pyrexia and as a source of potential hepatoprotective agents.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Shahriar Ahmed
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Md. Ashiqul Islam
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Abdul Haye
- Department of Forensic MedicineUniversity of Science and Technology ChittagongChittagongBangladesh
| | - S. M. Naim Uddin
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | | | - Mohammed Kamrul Hossain
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Arkajyoti Paul
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of MicrobiologyJagannath UniversityDhakaBangladesh
| | - Talha Bin Emran
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
| |
Collapse
|
8
|
Al‐Rawaf HA, Alghadir AH, Gabr SA. MicroRNAs as Biomarkers of Pain Intensity in Patients With Chronic Fatigue Syndrome. Pain Pract 2019; 19:848-860. [DOI: 10.1111/papr.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Hadeel A. Al‐Rawaf
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Sami A. Gabr
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| |
Collapse
|
9
|
Asante DB, Henneh IT, Acheampong DO, Kyei F, Adokoh CK, Ofori EG, Domey NK, Adakudugu E, Tangella LP, Ameyaw EO. Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomed Pharmacother 2019; 111:1187-1203. [DOI: 10.1016/j.biopha.2018.12.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022] Open
|
10
|
Paul D, Manna K, Sengupta A, Mukherjee S, Dey S, Bag PK, Dhar P. A novel nanoformulation of α-eleostearic acid restores molecular pathogenesis of hypersensitivity. Nanomedicine (Lond) 2019; 14:529-552. [PMID: 30753111 DOI: 10.2217/nnm-2018-0450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM The present work provides first-time empirical and molecular interaction evidence to establish the higher biofunctionality of a therapeutic lipid, α-eleostearic acid (ESA), encapsulated in a novel and thoroughly characterized biocompatible nanoemulsion (NE) system (particle size <200 nm). MATERIALS & METHODS A novel methodology was employed to fabricate novel formulations of ESA. Molecular biological tools and assays were used to arrive at definite conclusions. RESULTS The proinflammatory profile was found to be significantly mitigated in the hypersensitized rats administered with the ESA-NE formulation more emphatically as compared with ESA-conventional emulsion in both in vivo and ex vivo models. CONCLUSION The novel ESA-NE formulation shows a lot of palpable promise for clinical applications.
Collapse
Affiliation(s)
- Debjyoti Paul
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India.,Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.,Department of Biotechnology, Techno India University, EM-4, EM Block, Salt Lake City, Sector V, Kolkata 700091, West Bengal, India
| | - Krishnendu Manna
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Aaveri Sengupta
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Sayani Mukherjee
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India.,Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| |
Collapse
|
11
|
Ren J, Li L, Wang Y, Zhai J, Chen G, Hu K. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells. Biomed Pharmacother 2019; 109:555-562. [DOI: 10.1016/j.biopha.2018.10.112] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022] Open
|
12
|
Cortés-Ciriano I, Firth NC, Bender A, Watson O. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening. J Chem Inf Model 2018; 58:2000-2014. [PMID: 30130102 DOI: 10.1021/acs.jcim.8b00376] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The versatility of similarity searching and quantitative structure-activity relationships to model the activity of compound sets within given bioactivity ranges (i.e., interpolation) is well established. However, their relative performance in the common scenario in early stage drug discovery where lots of inactive data but no active data points are available (i.e., extrapolation from the low-activity to the high-activity range) has not been thoroughly examined yet. To this aim, we have designed an iterative virtual screening strategy which was evaluated on 25 diverse bioactivity data sets from ChEMBL. We benchmark the efficiency of random forest (RF), multiple linear regression, ridge regression, similarity searching, and random selection of compounds to identify a highly active molecule in the test set among a large number of low-potency compounds. We use the number of iterations required to find this active molecule to evaluate the performance of each experimental setup. We show that linear and ridge regression often outperform RF and similarity searching, reducing the number of iterations to find an active compound by a factor of 2 or more. Even simple regression methods seem better able to extrapolate to high-bioactivity ranges than RF, which only provides output values in the range covered by the training set. In addition, examination of the scaffold diversity in the data sets used shows that in some cases similarity searching and RF require two times as many iterations as random selection depending on the chemical space covered in the initial training data. Lastly, we show using bioactivity data for COX-1 and COX-2 that our framework can be extended to multitarget drug discovery, where compounds are selected by concomitantly considering their activity against multiple targets. Overall, this study provides an approach for iterative screening where only inactive data are present in early stages of drug discovery in order to discover highly potent compounds and the best experimental set up in which to do so.
Collapse
Affiliation(s)
- Isidro Cortés-Ciriano
- Centre for Molecular Informatics, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Nicholas C Firth
- Centre for Medical Image Computing, Department of Computer Science , UCL , London WC1E 6BT , United Kingdom.,Evariste Technologies Ltd , Goring on Thames RG8 9AL , United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Oliver Watson
- Evariste Technologies Ltd , Goring on Thames RG8 9AL , United Kingdom
| |
Collapse
|
13
|
Toxicological evaluation of flumequine in pubertal male rats after oral administration for six weeks. J Vet Res 2018. [DOI: 10.2478/jvetres-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Veterinarians use flumequine (FLU) widely but its toxicological effects are still unclear.
Material and Methods
FLU doses of 53, 200, or 750 mg/kg were administered orally for six weeks to pubertal male rats for evaluation of their toxicity.
Results
Weight gain was poorer after seven days of exposure to FLU 750, but relative weights of the brain, adrenal and thyroid glands, and testes were notably higher. Haematological and lipid profile parameters, cardiac markers, and inorganic phosphate significantly increased in the FLU 750 group. Blood glucose, oestradiol and serum concentrations of immunoglobulins G (IgG) and E (IgE) significantly decreased after treatment. The levels of interleukins 10 (IL-10) and 6 (IL-6) fell significantly in the FLU 200 and FLU 750 groups. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and cyclooxygenase-2 (Cox-2) expression amplified after treatment. Serum levels of free triiodothyronine (fT3) and free thyroxine (fT4) reduced in the FLU 200 and FLU 750 groups without changes in total T3 or T4 level. All doses of FLU significantly depressed concentrations of thyroid-stimulating hormone (TSH) and testosterone. Histopathology of thyroid glands from rats treated with FLU 750 showed degeneration and depletion of thyroid follicular epithelial cells. Expression of 8-hydroxydeoxyguanosine (8-OHdG) was increased in a dose-dependent manner in the brain, but decreased in the testes. Expression of CYP1A1 increased in the adrenal and pituitary glands.
Conclusion
The results of this study suggest that the toxicity of FLU in rats is an effect of its disruptive influence on the pituitary-thyroid hormonal system and on the dysfunction of the immune system.
Collapse
|
14
|
Kang J, Hossain MA, Choi B, Cho JH, Kang SJ, Ku HO, Jeong SH, Kang HG. Toxicological Evaluation of Flumequine in Pubertal Male Rats After Oral Administration for Six Weeks. J Vet Res 2018; 62:87-96. [PMID: 29978132 PMCID: PMC5957466 DOI: 10.1515/jvetres-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/20/2018] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Veterinarians use flumequine (FLU) widely but its toxicological effects are still unclear. MATERIAL AND METHODS FLU doses of 53, 200, or 750 mg/kg were administered orally for six weeks to pubertal male rats for evaluation of their toxicity. RESULTS Weight gain was poorer after seven days of exposure to FLU 750, but relative weights of the brain, adrenal and thyroid glands, and testes were notably higher. Haematological and lipid profile parameters, cardiac markers, and inorganic phosphate significantly increased in the FLU 750 group. Blood glucose, oestradiol and serum concentrations of immunoglobulins G (IgG) and E (IgE) significantly decreased after treatment. The levels of interleukins 10 (IL-10) and 6 (IL-6) fell significantly in the FLU 200 and FLU 750 groups. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and cyclooxygenase-2 (Cox-2) expression amplified after treatment. Serum levels of free triiodothyronine (fT3) and free thyroxine (fT4) reduced in the FLU 200 and FLU 750 groups without changes in total T3 or T4 level. All doses of FLU significantly depressed concentrations of thyroid-stimulating hormone (TSH) and testosterone. Histopathology of thyroid glands from rats treated with FLU 750 showed degeneration and depletion of thyroid follicular epithelial cells. Expression of 8-hydroxydeoxyguanosine (8-OHdG) was increased in a dose-dependent manner in the brain, but decreased in the testes. Expression of CYP1A1 increased in the adrenal and pituitary glands. CONCLUSION The results of this study suggest that the toxicity of FLU in rats is an effect of its disruptive influence on the pituitary-thyroid hormonal system and on the dysfunction of the immune system.
Collapse
Affiliation(s)
- JeongWoo Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Md Akil Hossain
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Byungkook Choi
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Joon-Hyoung Cho
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Seok-Jin Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Hyun-Ok Ku
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Sang-Hee Jeong
- GLP Research Center, College of Natural Sciences, Hoseo University, 165, Asan City, Republic of Korea
| | - Hwan-Goo Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| |
Collapse
|
15
|
Kassab SE, Khedr MA, Ali HI, Abdalla MM. Discovery of new indomethacin-based analogs with potentially selective cyclooxygenase-2 inhibition and observed diminishing to PGE2 activities. Eur J Med Chem 2017; 141:306-321. [PMID: 29031075 DOI: 10.1016/j.ejmech.2017.09.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
New ring-extended analogs of indomethacin were designed based on the structure of active binding site of both COX-1 and COX-2 isoenzymes and the interaction pattern required for selective inhibition of COX-2 to improve its selectivity against COX-2. The strategy adopted for designing the new inhibitors involved i) ring extension of indomethacin to reduce the possibility of analogs to be accommodated into the narrow hydrophobic tunnel of COX-1, ii) deletion of carboxylic acid to reduce the possibility of inhibitor to form salt bridge with Arg120 and eventually prevent COX-1 inhibition, and iii) introduction of methylsulfonyl group to increase the opportunity of the analogs to interact with the polar side pocket that's is crucial for inhibition process of COX-2. The three series of tetrahydrocarbazoles involving 4, 5, 9, 10 and 12 were synthesized in quantitative yields adopting limited number of reaction steps, and applying laboratory friendly reaction conditions. In vitro and in vivo assays for data profiling the new candidates revealed the significant improvement in the potency and selectivity against COX-2 of 6-methoxytetrahydrocarbazole 4 (IC50 = 0.97 μmol) to verify the effect of ring extension in comparison to indomethacin (IC50 = 2.63 μmol), and 6-methylsulfonyltetrahydrocarbazole 10a (IC50 = 0.28 μmol) to verify the effect of ring extension and introduction of methylsulfonyl group. 9-(4-chlorobenzoyl)-6-(methylsulfonyl)-1,2,3,9-tetrahydro-4H-carbazol-4-one 12a showed the most potential and selective activity against COX-2 (IC50 = 0.23 μmol) to be with superior potency to Celecoxib (IC50 = 0.30 μmol). Consistently, 12a was the most active with all the other anti-inflammatory test descriptors and its activity in diminishing the PGE2 with the other analogs confirmed the elaboration of new class of selective COX-2 inhibitors beyond the diarylsulfonamides as a previously common class of selective COX-2 inhibitors. Molecular docking study revealed the high binding score of compound 12a (-30.78 kcal/mol), with less clash contribution (7.2) that is close to indomethacin. Also, 12a showed low conformation entropy score (1.40). Molecular dynamic (MD) simulation identified the equilibrium of both potential and kinetic energies.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira 22516, Egypt.
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Hamed I Ali
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; Department of Pharmaceutical Sciences, Texas A&M University Irma Lerma Rangel College of Pharmacy, Kingsville 78363, Texas, USA
| | - Mohamed M Abdalla
- Research Unit, Saco Pharm. Co., 6th of October City, Giza 68330, Egypt
| |
Collapse
|
16
|
Bhat RA, Lingaraju MC, Pathak NN, Kalra J, Kumar D, Kumar D, Tandan SK. Effect of ursolic acid in attenuating chronic constriction injury-induced neuropathic pain in rats. Fundam Clin Pharmacol 2016; 30:517-528. [PMID: 27414466 DOI: 10.1111/fcp.12223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 01/13/2023]
Abstract
Ursolic acid (UA; 3b-hydroxy-12-urs-12-en-28-oic acid), a natural pentacyclic triterpenoid carboxylic acid, has been known to possess potent anti-inflammatory, antioxidant, and antinociceptive effects in various animal models. Therefore, this study was designed to investigate the antihyperalgesic, anti-inflammatory, and antioxidant effects of UA at 5, 10, and 20 mg/kg of doses via per os (p.o.) route for 14 days in chronic constriction injury (CCI)-induced neuropathic pain in rats. Pain behavior in rats was evaluated before and after UA administration via mechanical and heat hyperalgesia. CCI caused significant increase in levels of pro-inflammatory cytokines and oxido-nitrosative stress. In addition, significant increase in myeloperoxidase, malondialdehyde, protein carbonyl, nitric oxide (NO), and total oxidant status (TOS) levels in sciatic nerve and spinal cord concomitant with mechanical and heat hyperalgesia is also noted for CCI-induced neuropathic pain. Administration of UA significantly reduced the increased levels of pro-inflammatory cytokines and TOS. Further, reduced glutathione is also restored by UA. UA also showed in vitro NO and superoxide radical scavenging activity. UA has a potential in attenuating neuropathic pain behavior in CCI model which may possibly be attributed to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Rafia A Bhat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Nitya N Pathak
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Jaspreet Kalra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Surendra K Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
17
|
Cortes-Ciriano I, Murrell DS, van Westen GJ, Bender A, Malliavin TE. Prediction of the potency of mammalian cyclooxygenase inhibitors with ensemble proteochemometric modeling. J Cheminform 2015; 7:1. [PMID: 25705261 PMCID: PMC4335128 DOI: 10.1186/s13321-014-0049-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenases (COX) are present in the body in two isoforms, namely: COX-1, constitutively expressed, and COX-2, induced in physiopathological conditions such as cancer or chronic inflammation. The inhibition of COX with non-steroideal anti-inflammatory drugs (NSAIDs) is the most widely used treatment for chronic inflammation despite the adverse effects associated to prolonged NSAIDs intake. Although selective COX-2 inhibition has been shown not to palliate all adverse effects (e.g. cardiotoxicity), there are still niche populations which can benefit from selective COX-2 inhibition. Thus, capitalizing on bioactivity data from both isoforms simultaneously would contribute to develop COX inhibitors with better safety profiles. We applied ensemble proteochemometric modeling (PCM) for the prediction of the potency of 3,228 distinct COX inhibitors on 11 mammalian cyclooxygenases. Ensemble PCM models ([Formula: see text], and RMSEtest = 0.71) outperformed models exclusively trained on compound ([Formula: see text], and RMSEtest = 1.09) or protein descriptors ([Formula: see text] and RMSEtest = 1.10) on the test set. Moreover, PCM predicted COX potency for 1,086 selective and non-selective COX inhibitors with [Formula: see text] and RMSEtest = 0.76. These values are in agreement with the maximum and minimum achievable [Formula: see text] and RMSEtest values of approximately 0.68 for both metrics. Confidence intervals for individual predictions were calculated from the standard deviation of the predictions from the individual models composing the ensembles. Finally, two substructure analysis pipelines singled out chemical substructures implicated in both potency and selectivity in agreement with the literature. Graphical AbstractPrediction of uncorrelated bioactivity profiles for mammalian COX inhibitors with Ensemble Proteochemometric Modeling.
Collapse
Affiliation(s)
- Isidro Cortes-Ciriano
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale; CNRS UMR 3825, 25, rue du Dr Roux, Paris, 75015 France
| | - Daniel S Murrell
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gerard Jp van Westen
- European Molecular Biology Laboratory European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Thérèse E Malliavin
- Département de Biologie Structurale et Chimie, Institut Pasteur, Unité de Bioinformatique Structurale; CNRS UMR 3825, 25, rue du Dr Roux, Paris, 75015 France
| |
Collapse
|
18
|
In vivo analgesic, antipyretic, and anti-inflammatory potential in Swiss albino mice and in vitro thrombolytic activity of hydroalcoholic extract from Litsea glutinosa leaves. Biol Res 2014; 47:56. [PMID: 25418600 PMCID: PMC4236443 DOI: 10.1186/0717-6287-47-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/13/2014] [Indexed: 12/04/2022] Open
Abstract
Background The study was conducted to evaluate the in vitro thrombolytic activity, and in vivo analgesic, anti-inflammatory and antipyretic potentials of different hydrocarbon soluble extracts of Litsea glutinosa leaves for the first time widely used in the folkloric treatments in Bangladesh. This work aimed to create new insights on the fundamental mechanisms of the plant extracts involved in these activities. Results In thrombolytic activity assay, a significant clot disruption was observed at dose of 1 mg/mL for each of the extracts (volume 100 μL) when compared to the standard drug streptokinase. The n-hexane, ethyl acetate, chloroform, and crude methanolic extracts showed 32.23 ± 0.26, 37.67 ± 1.31, 43.13 ± 0.85, and 46.78 ± 0.9% clot lysis, respectively, whereas the positive control streptokinase showed 93.35 ± 0.35% disruption at the dose of 30,000 I.U. In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (15.54 ± 0.37 sec) which differed significantly (P <0.01 and P <0.001) with that of the standard drug ketorolac (16.38 ± 0.27 sec). In acetic acid induced writhing test, the crude methanolic extract showed significant (P <0.01 and P <0.001) analgesic potential at doses 250 and 500 mg/kg body weight (45.98 and 56.32% inhibition, respectively), where ketorolac showed 64.36% inhibition. In anti-inflammatory activity test, the crude methanolic extract showed significant (P <0.001) potential at doses 250 and 500 mg/kg body weight (1.51 ± 0.04 and 1.47 ± 0.03 mm paw edema, respectively), where ketorolac showed 1.64 ± 0.05 mm edema after 3 h of carrageenan injection. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (32.78 ± 0.46°C) at dose of 500 mg/kg-body weight, when the standard (at dose 150 mg/kg-body weight) exerted 33.32 ± 0.67°C temperature after 3 h of administration. Conclusions Our results yield that the crude hydroalcoholic extract has better effects than the other in all trials. In the context, it can be said that the leaves of L. glutinosa possess remarkable pharmacological effects, and justify its traditional use as analgesic, antipyretic, anti-inflammatory, and thrombolytic agent.
Collapse
|
19
|
Raju GS, Moghal MMR, Hossain MS, Hassan MM, Billah MM, Ahamed SK, Rana SMM. Assessment of pharmacological activities of two medicinal plant of Bangladesh: Launaea sarmentosa and Aegialitis rotundifolia roxb in the management of pain, pyrexia and inflammation. Biol Res 2014; 47:55. [PMID: 25418519 PMCID: PMC4416252 DOI: 10.1186/0717-6287-47-55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background The current study aims at evaluating the analgesic, anti-pyretic and anti-inflammatory properties of methanolic extract of the stem, bark and leaves of Launaea sarmentosa and Aegialitis rotundifolia roxb. Results The AELS and AEAR extract presented a significant (***p < 0.001) dose dependent increase in reaction time in writhing method and showed inhibition of 63.1% and 57.1% respectively at the doses of 400 mg/kg body weight while standard drug showed (P < 0.001) inhibition of 69.23%. In tail immersion method, AELS and AEAR showed maximum time of tail retention at 30 min in hot water i.e. 6.93 sec and 6.54 sec respectively at highest doses of 400 mg/kg body weight than lower dose while standard pentazocine showed reaction time of 7.62 sec. The AELS and AEAR extract also exhibited promising anti-inflammatory effect as demonstrated by statistically significant inhibition of paw volume by 32.48% and 26.75% respectively at the dose of 400 mg/kg body weight while the value at the dose of 200 mg/kg body weight were linear to higher dose at the 3rd hour of study. On the other hand, Standard indomethacin inhibited 40.13% of inflammation (***P < 0.001). In Cotton-pellet granuloma method, AELS and AEAR extract at the dose of 400 mg/kg body weight exhibited inhibition of inflammation of 34.7% and 29.1% respectively while standard drug showed (P < 0.001) inhibition of 63.22%. Intraperitoneal administration of AELS and AEAR showed dose dependent decrease in body temperature in brewer’s yeast induced hyperthermia in rats at both doses. However, AELS significantly decreased body temperature (***p < 0.001) at 400 mg/kg compared to control. Conclusions Present work propose that the methanolic extract of Launaea sarmentosa and Aegialitis rotundifolia roxb possesses dose dependent pharmacological action which supports its therapeutic use in folk medicine possibly mediated through the inhibition or blocking of release of prostaglandin and/or actions of vasoactive substances such as histamine, serotonin and kinins.
Collapse
|
20
|
Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M. The Attenuation of Pain Behavior and Serum COX-2 Concentration by Curcumin in a Rat Model of Neuropathic Pain. Korean J Pain 2014; 27:246-52. [PMID: 25031810 PMCID: PMC4099237 DOI: 10.3344/kjp.2014.27.3.246] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/07/2014] [Accepted: 06/08/2014] [Indexed: 12/31/2022] Open
Abstract
Background Neuropathic pain is generally defined as a chronic pain state resulting from peripheral and/or central nerve injury. There is a lack of effective treatment for neuropathic pain, which may possibly be related to poor understanding of pathological mechanisms at the molecular level. Curcumin, a therapeutic herbal extract, has shown to be effectively capable of reducing chronic pain induced by peripheral administration of inflammatory agents such as formalin. In this study, we aimed to show the effect of curcumin on pain behavior and serum COX-2 level in a Chronic Constriction Injury (CCI) model of neuropathic pain. Methods Wistar male rats (150-200 g, n = 8) were divided into three groups: CCI vehicle-treated, sham-operated, and CCI drug-treated group. Curcumin (12.5, 25, 50 mg/kg, IP) was injected 24 h before surgery and continued daily for 7 days post-surgery. Behavioral tests were performed once before and following the days 1, 3, 5, 7 after surgery. The serum COX-2 level was measured on day 7 after the surgery. Results Curcumin (50 mg/kg) decreased mechanical and cold allodynia (P < 0.001) and produced a decline in serum COX-2 level (P < 0.001). Conclusions A considerable decline in pain behavior and serum COX-2 levels was seen in rat following administration of curcumin in CCI model of neuropathic pain. High concentration of Curcumin was able to reduce the chronic neuropathic pain induced by CCI model and the serum level of COX-2.
Collapse
Affiliation(s)
- Taraneh Moini Zanjani
- Department of Pharmacology & Neuroscience Research Center, Shahid Beheshti Medical University, Tehran, Iran
| | - Haleh Ameli
- Department of Pharmacology & Neuroscience Research Center, Shahid Beheshti Medical University, Tehran, Iran
| | - Farzaneh Labibi
- Department of Immunology, Shahid Beheshti Medical University, Tehran, Iran
| | - Katayoun Sedaghat
- Endocrine Physiology Research Center, Shahid Beheshti Medical University, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Department of Pharmacology & Neuroscience Research Center, Shahid Beheshti Medical University, Tehran, Iran
| |
Collapse
|
21
|
Khan IA, Aziz A, Manzoor Z, Munawar SH, Sarwar HS, Afzal A, Raza MA. Study on antipyretic activity of Rumex vesicarius leaves extract in albino rabbits. Vet World 2014. [DOI: 10.14202/vetworld.2014.44-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Stenholm A, Göransson U, Bohlin L. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:176-183. [PMID: 22991332 DOI: 10.1002/pca.2398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 07/28/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. OBJECTIVE To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. METHOD Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. RESULTS α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. CONCLUSION The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions.
Collapse
Affiliation(s)
- A Stenholm
- High Throughput and Analysis, R&D, GE Healthcare, Björkgatan 30, S-751 84 Uppsala, Sweden.
| | | | | |
Collapse
|
23
|
Luo C, Urgard E, Vooder T, Metspalu A. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Med Hypotheses 2011; 77:174-8. [DOI: 10.1016/j.mehy.2011.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/15/2011] [Accepted: 04/04/2011] [Indexed: 02/08/2023]
|
24
|
Matysiak W, Jodłowska-Jędrych B. Does administration of non-steroidal anti-inflammatory drug determine morphological changes in adrenal cortex: ultrastructural studies. PROTOPLASMA 2010; 246:109-18. [PMID: 20721677 PMCID: PMC2947012 DOI: 10.1007/s00709-010-0194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/28/2010] [Indexed: 05/09/2023]
Abstract
Rofecoxib (Vioxx© made by Merck Sharp & Dohme, the USA) is a non-steroidal anti-inflammatory drug which belongs to the group of selective inhibitors of cyclooxygenasis-2, i.e., coxibs. Rofecoxib was first registered in the USA, in May 1999. Since then the drug was received by millions of patients. Drugs of this group were expected to exhibit increased therapeutic action. Additionally, there were expectations concerning possibilities of their application, at least as auxiliary drugs, in neoplastic therapy due to intensifying of apoptosis. In connection with the withdrawal of Vioxx© (rofecoxib) from pharmaceutical market, attempts were made to conduct electron-microscopic evaluation of cortical part of the adrenal gland in preparations obtained from animals under influence of the drug. Every morning animals from the experimental group (15 rats) received rofecoxib (suspension in physiological saline)--non-steroidal anti-inflammatory drug (Vioxx©, Merck Sharp and Dohme, the USA), through an intragastric tube in the dose of 1.25 mg during 8 weeks. In the evaluated material, there was found a greater number of secretory vacuoles and large, containing cholesterol and other lipids as well as generated glucocorticoids, lipid drops in cytoplasm containing prominent endoplasmic reticulum. There were also found cells with cytoplasm of smaller density--especially in apical and basal parts of cells. Mitochondria occasionally demonstrated features of delicate swelling. The observed changes, which occurred on cellular level with application of large doses of the drug, result from mobilization of adaptation mechanisms of the organism.
Collapse
Affiliation(s)
- Włodzimierz Matysiak
- Department of Histology and Embryology, Medical University of Lublin, 11 Street Radziwiłłowska, 20-080 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Street Radziwiłłowska, 20-080 Lublin, Poland
| |
Collapse
|
25
|
Antioxidant and antipyretic properties of methanolic extract of Amaranthus spinosus leaves. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60169-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Ashafa AOT, Yakubu MT, Grierson DS, Afolayan AJ. Evaluation of aqueous extract of Felicia muricata leaves for anti-inflammatory, antinociceptive, and antipyretic activities. PHARMACEUTICAL BIOLOGY 2010; 48:994-1001. [PMID: 20731550 DOI: 10.3109/13880200903373664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Felicia muricata Thunb. (Nees) (Asteraceae) leaves are used in folklore medicine of South Africa as an oral remedy for pain and inflammation. However, the efficacy of the plant part is yet to be validated with scientific experiments. OBJECTIVE The current study is an effort to investigate the anti-inflammatory, antinociceptive, and antipyretic activities of aqueous extract of F. muricata leaves. MATERIALS AND METHODS The phytochemical screening of aqueous extract of Felicia muricata leaves and the efficacy of the extract at the doses of 50, 100, and 200 mg/kg body weight was investigated in experimental animals using several models of inflammation (paw edema induced by carrageenan and egg albumin), nociception (acetic acid-induced writhing, formalin-induced pain and tail immersion), and fever (brewer's yeast-induced hyperthermia). RESULTS The extract contained alkaloids, flavonoids, tannins, saponins, and phenolics. The extract dose-dependently reduced (P <0.05) the number of writhes and stretches induced by acetic acid, number of licks induced by formalin, paw volumes induced by carrageenan and egg albumin. The reaction time by the tail of the extract-treated animals to the hot water also increased. The extract also reduced hyperthermia induced by brewer's yeast. The highest dose (200 mg/kg body weight of the extract) produced the best result in all cases. DISCUSSION AND CONCLUSION This study revealed that the aqueous extract of Felicia muricata leaves possessed anti-inflammatory, antinociceptive and antipyretic activities. These findings have therefore supported the use of aqueous extract of Felicia muricata leaves in the traditional medicine of South Africa as an oral remedy for pains, inflammation, and fever.
Collapse
|
27
|
Tchetina EV, Di Battista JA, Zukor DJ, Antoniou J, Poole AR. Prostaglandin PGE2 at very low concentrations suppresses collagen cleavage in cultured human osteoarthritic articular cartilage: this involves a decrease in expression of proinflammatory genes, collagenases and COL10A1, a gene linked to chondrocyte hypertrophy. Arthritis Res Ther 2008; 9:R75. [PMID: 17683641 PMCID: PMC2206385 DOI: 10.1186/ar2273] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 06/25/2007] [Accepted: 08/07/2007] [Indexed: 11/10/2022] Open
Abstract
Suppression of type II collagen (COL2A1) cleavage by transforming growth factor (TGF)-beta2 in cultured human osteoarthritic cartilage has been shown to be associated with decreased expression of collagenases, cytokines, genes associated with chondrocyte hypertrophy, and upregulation of prostaglandin (PG)E2 production. This results in a normalization of chondrocyte phenotypic expression. Here we tested the hypothesis that PGE2 is associated with the suppressive effects of TGF-beta2 in osteoarthritic (OA) cartilage and is itself capable of downregulating collagen cleavage and hypertrophy in human OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with a wide range of concentrations of exogenous PGE2 (1 pg/ml to 10 ng/ml). COL2A1 cleavage was measured by ELISA. Proteoglycan content was determined by a colorimetric assay. Gene expression studies were performed with real-time PCR. In explants from patients with OA, collagenase-mediated COL2A1 cleavage was frequently downregulated at 10 pg/ml (in the range 1 pg/ml to 10 ng/ml) by PGE2 as well as by 5 ng/ml TGF-beta2. In control OA cultures (no additions) there was an inverse relationship between PGE2 concentration (range 0 to 70 pg/ml) and collagen cleavage. None of these concentrations of added PGE2 inhibited the degradation of proteoglycan (aggrecan). Real-time PCR analysis of articular cartilage from five patients with OA revealed that PGE2 at 10 pg/ml suppressed the expression of matrix metalloproteinase (MMP)-13 and to a smaller extent MMP-1, as well as the proinflammatory cytokines IL-1beta and TNF-alpha and type X collagen (COL10A1), the last of these being a marker of chondrocyte hypertrophy. These studies show that PGE2 at concentrations much lower than those generated in inflammation is often chondroprotective in that it is frequently capable of selectively suppressing the excessive collagenase-mediated COL2A1 cleavage found in OA cartilage. The results also show that chondrocyte hypertrophy in OA articular cartilage is functionally linked to this increased cleavage and is often suppressed by these low concentrations of added PGE2. Together these initial observations reveal the importance of very low concentrations of PGE2 in maintaining a more normal chondrocyte phenotype.
Collapse
Affiliation(s)
- Elena V Tchetina
- Shriners Hospitals for Children, Departments of Surgery and Medicine, McGill University, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
- Genetics Department, Institute of Rheumatology, Russian Academy of Medical Sciences, Kashirskoye shosse 34A, Moscow 115522, Russia
| | - John A Di Battista
- Division of Rheumatology, Department of Medicine, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
| | - David J Zukor
- Jewish General Hospital, McGill University, 3755 Cote St. Catherine Road, Montreal, Quebec H3T 1E2, Canada
| | - John Antoniou
- Jewish General Hospital, McGill University, 3755 Cote St. Catherine Road, Montreal, Quebec H3T 1E2, Canada
| | - A Robin Poole
- Shriners Hospitals for Children, Departments of Surgery and Medicine, McGill University, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
- Department of Surgery, 687 Pine Avenue West, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
28
|
Khan A, Haque E, Mukhlesur Rahman M, Mosaddik A, Abdul Alim Al-Bari M, Rahman M. Antipyretic Activity of Rhizome of Drynaria quercifolia. in Rabbit. PHARMACEUTICAL BIOLOGY 2007; 45:312-315. [DOI: 10.1080/13880200701215075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
29
|
Bingham S, Beswick PJ, Blum DE, Gray NM, Chessell IP. The role of the cylooxygenase pathway in nociception and pain. Semin Cell Dev Biol 2006; 17:544-54. [PMID: 17071117 DOI: 10.1016/j.semcdb.2006.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cycloxygenase (COX) pathways have long been targeted for the treatment of inflammatory pain, initially through the use of NSAIDs. With the demonstration of two major COX isoforms, COX-1 and COX-2, involved in the production of prostanoids, but with different distribution and regulation, selective COX-2 inhibitors have been developed. This review covers factors influencing COX enzyme activity, the role of their products in the development and maintenance of pain and discusses recent safety concerns of COX-2 inhibitors.
Collapse
Affiliation(s)
- Sharon Bingham
- Neurology and Gastrointestinal CEDD, GlaxoSmithKline, Coldharbour Road, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | |
Collapse
|
30
|
Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW. Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br J Cancer 2006; 94:842-53. [PMID: 16523199 PMCID: PMC2361380 DOI: 10.1038/sj.bjc.6603030] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/20/2006] [Accepted: 02/06/2006] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies have shown not only a relationship between the intake of dietary lipids and an increased risk of developing metastatic prostate cancer, but also the type of lipid intake that influences the risk of metastatic prostate cancer. The Omega-6 poly-unsaturated fatty acid, Arachidonic acid, has been shown to enhance the proliferation of malignant prostate epithelial cells and increase the risk of advanced prostate cancer. However, its role in potentiating the migration of cancer cells is unknown. Here we show that arachidonic acid at concentrations
Collapse
Affiliation(s)
- M D Brown
- ProMPT Genito Urinary Cancer Research Group, Cancer Research UK.
| | | | | | | | | |
Collapse
|