1
|
Guan X, Du Y, Ma R, Teng N, Ou S, Zhao H, Li X. Construction of the XGBoost model for early lung cancer prediction based on metabolic indices. BMC Med Inform Decis Mak 2023; 23:107. [PMID: 37312179 DOI: 10.1186/s12911-023-02171-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Lung cancer is a malignant tumour, and early diagnosis has been shown to improve the survival rate of lung cancer patients. In this study, we assessed the use of plasma metabolites as biomarkers for lung cancer diagnosis. In this work, we used a novel interdisciplinary mechanism, applied for the first time to lung cancer, to detect biomarkers for early lung cancer diagnosis by combining metabolomics and machine learning approaches. RESULTS In total, 478 lung cancer patients and 370 subjects with benign lung nodules were enrolled from a hospital in Dalian, Liaoning Province. We selected 47 serum amino acid and carnitine indicators from targeted metabolomics studies using LC‒MS/MS and age and sex demographic indicators of the subjects. After screening by a stepwise regression algorithm, 16 metrics were included. The XGBoost model in the machine learning algorithm showed superior predictive power (AUC = 0.81, accuracy = 75.29%, sensitivity = 74%), with the metabolic biomarkers ornithine and palmitoylcarnitine being potential biomarkers to screen for lung cancer. The machine learning model XGBoost is proposed as an tool for early lung cancer prediction. This study provides strong support for the feasibility of blood-based screening for metabolites and provide a safer, faster and more accurate tool for early diagnosis of lung cancer. CONCLUSIONS This study proposes an interdisciplinary approach combining metabolomics with a machine learning model (XGBoost) to predict early the occurrence of lung cancer. The metabolic biomarkers ornithine and palmitoylcarnitine showed significant power for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Xiuliang Guan
- School of Public Health, Dalian Medical University, Dalian, 116000, China
| | - Yue Du
- School of Public Health, Dalian Medical University, Dalian, 116000, China
| | - Rufei Ma
- School of Public Health, Dalian Medical University, Dalian, 116000, China
| | - Nan Teng
- School of Public Health, Dalian Medical University, Dalian, 116000, China
| | - Shu Ou
- School of Public Health, Dalian Medical University, Dalian, 116000, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaofeng Li
- School of Public Health, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
2
|
Potential of Amantadine to Ameliorate Glutamate-Induced Pyramidal Cells Toxicity in Juvenile Rat' Brain Cortex. Neurotox Res 2021; 39:1203-1210. [PMID: 33891283 DOI: 10.1007/s12640-021-00365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
Glutamate (Gt) neurotoxicity contributes to a wide spectrum of neurological conditions. Loss of glutamate transporters leads to intracellular Gt accumulation. Amantadin (AMn) is a non-competitive N-methyl-D-aspartate (NMDA) antagonist that can partially inhibit Gt transporters and influence protein phosphatase 2A subunit B (PP-2A-B) activity. Herein, we investigate the potential of AMn administered in the early life stages to reverse the Gt-induced changes in the cerebral cortex in the rat model. We report that AMn can reverse Gt-induced structural changes in the brain cortex and increase PP-2A activity. Additionally, PP-2A-B activity in the AMn + Gt-treated group was comparable to controls. Moreover, administration of AMn leads to a decrease of apoptotic index in the Gt-treated individuals. We suggest that severe histopathological changes observed in Gt group could be attributed to the decreased PP-2A expression causing an imbalance between phosphatase and protein kinase activities and leading to a strong positive TUNEL reaction. We provide a short summary of the current state of knowledge regarding the role of PP-2A-B in the Gt-induced neurotoxicity and AMn treatment and discuss the potential of amantadine as a potential therapeutic agent.
Collapse
|
3
|
Moreno P, Jiménez-Jiménez C, Garrido-Rodríguez M, Calderón-Santiago M, Molina S, Lara-Chica M, Priego-Capote F, Salvatierra Á, Muñoz E, Calzado MA. Metabolomic profiling of human lung tumor tissues - nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol 2018; 12:1778-1796. [PMID: 30099851 PMCID: PMC6165994 DOI: 10.1002/1878-0261.12369] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although metabolomics has attracted considerable attention in the field of lung cancer (LC) detection and management, only a very limited number of works have applied it to tissues. As such, the aim of this study was the thorough analysis of metabolic profiles of relevant LC tissues, including the most important histological subtypes (adenocarcinoma and squamous cell lung carcinoma). Mass spectrometry‐based metabolomics, along with genetic expression and histological analyses, were performed as part of this study, the widest to date, to identify metabolic alterations in tumors of the most relevant histological subtypes in lung. A total of 136 lung tissue samples were analyzed and 851 metabolites were identified through metabolomic analysis. Our data show the existence of a clear metabolic alteration not only between tumor vs. nonmalignant tissue in each patient, but also inherently intrinsic changes in both AC and SCC. Significant changes were observed in the most relevant biochemical pathways, and nucleotide metabolism showed an important number of metabolites with high predictive capability values. The present study provides a detailed analysis of the metabolomic changes taking place in relevant biochemical pathways of the most important histological subtypes of LC, which can be used as biomarkers and also to identify novel targets.
Collapse
Affiliation(s)
- Paula Moreno
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | | | - Mónica Calderón-Santiago
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Susana Molina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Ángel Salvatierra
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
4
|
Downregulation of ornithine decarboxylase by pcDNA-ODCr inhibits gastric cancer cell growth in vitro. Mol Biol Rep 2010; 38:949-55. [PMID: 20533091 DOI: 10.1007/s11033-010-0188-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 05/21/2010] [Indexed: 12/19/2022]
Abstract
Ornithine decarboxylase (ODC), the first rate-limiting enzyme of polyamine biosynthesis, was found to be associated with cell growth, proliferation and transformation. ODC gene expression in gastric cancer was increased and its level was positively correlated with the degree of malignity of gastric mucosa and development of gastric lesions. In order to evaluate the therapeutic effects of antisense RNA of ODC on gastric cancer, an antisense RNA of ODC expressing plasmid pcDNA-ODCr which delivered a 120 bp fragment complementary to the initiation codon of ODC gene was constructed and transfected to gastric cancer cells SGC7901 and MGC803. Expression of ODC in gastric cancer cells was determined by western blot. Cell proliferation was assessed by MTS assay. Cell cycle was analyzed by flow cytometry and Matrigel assay was performed to assess the ability of gastric cancer cell invasiveness. The results showed that the ODC gene expression in gastric cancer cells transfected with the pcDNA-ODCr was downregulated efficiently. Tumor cell proliferation was suppressed significantly, and cell cycle was arrested at G1 phase. Gastric cancer cells had reduced invasiveness after gene transfer. Our study suggested that antisense RNA of ODC expressing plasmid pcDNA-ODCr had antitumor activity by inhibiting the expression of ODC, and downregulation of ODC expression using a gene therapy approach might be a novel therapeutic strategy for gastric cancer.
Collapse
|
5
|
TIAN H, XU J, LIU XX, ZHANG B, LI WJ, SONG X. Apoptosis Effects of ODC and AdoMetDC Biantisense Virus on Esophageal Cancer Cell Eca109*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Cui X, Song B, Hou L, Wei Z, Tang J. High expression of osteoglycin decreases the metastatic capability of mouse hepatocarcinoma Hca-F cells to lymph nodes. Acta Biochim Biophys Sin (Shanghai) 2008; 40:349-55. [PMID: 18401533 DOI: 10.1111/j.1745-7270.2008.00392.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteoglycin, one of the matrix molecules, belongs to the small leucine-rich proteoglycan gene family and might play important roles in cell growth and differentiation and in pathological processes such as fibrosis and cancer growth. In this study, a eukaryotic expression plasmid pIRESpuro3 osteoglycin(+) was constructed and transfected into mouse hepatocarcinoma Hca-F cells to evaluate the contribution of osteoglycin to the malignant behavior of Hca-F. It was found that Hca-F cells transfected with pIRESpuro3 osteoglycin(+) showed significantly decreased potential for both migration and invasion. Furthermore, Hca-F cells transfected with osteoglycin showed decreased metastatic potential to peripheral lymph nodes. However, proliferation potential and adhesive capacity of Hca-F cells to different protein substrates were not influenced by osteoglycin transfection. In summary, high expression of osteoglycin decreases the metastatic capability of Hca-F to lymph nodes.
Collapse
Affiliation(s)
- Xiaonan Cui
- Department of Oncology, the First Affiliate Hospital of Dalian Medical University, Dalian 116011, China
| | | | | | | | | |
Collapse
|
7
|
Deng W, Jiang X, Mei Y, Sun J, Ma R, Liu X, Sun H, Tian H, Sun X. Role of ornithine decarboxylase in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2008; 40:235-243. [PMID: 18330478 DOI: 10.1111/j.1745-7270.2008.00397.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration. ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial cells, and there was a positive correlation between the level of ODC mRNA and the staging of tumors. The expression of ODC correlated with cyclin D1, a cell cycle protein, in synchronized breast cancer MDA-MB-231 cells. Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression of ODC and cyclin D1, resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase, and the inhibition of colony formation, an anchorage-independent growth pattern, and the migratory ability of MDA-MB-231 cells. rAd-ODC/Ex3as also markedly reduced the concentration of putrescine, but not spermidine or spermine, in MDA-MB-231 cells. The results suggested that the ODC gene might act as a prognostic factor for breast cancer and it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tian H, Liu X, Zhang B, Sun Q, Sun D. Adenovirus-mediated expression of both antisense ornithine decarboxylase and S-adenosylmethionine decarboxylase inhibits lung cancer cell growth. Acta Biochim Biophys Sin (Shanghai) 2007; 39:423-30. [PMID: 17558447 DOI: 10.1111/j.1745-7270.2007.00294.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Polyamine biosynthesis is controlled primarily by ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC). Antisense sequences of ODC and AdoMetDC genes were cloned into an adenoviral vector (named Ad-ODC-AdoMetDCas). To evaluate the effects of recombinant adenovirus Ad-ODC-AdoMetDCas that can simultaneously express both antisense ODC and AdoMetDC, the human lung cancer cell line A-549 was infected with Ad-ODC-AdoMetDCas or the control vector. Viable cell counting, determination of polyamine concentrations, cell cycle analysis, and Matrigel invasion assays were carried out to assess the properties of tumor growth and invasiveness. Our study showed that adenovirus-mediated antisense ODC and AdoMetDC expression inhibits tumor cell growth through blocking the polyamine synthesis pathway. Tumor cells were arrested at the G1 phase after gene transfer and the invasiveness was reduced. It suggested that the recombinant adenovirus Ad-ODC-AdoMetDCas might be a new anticancer reagent in the treatment of lung cancers.
Collapse
Affiliation(s)
- Hui Tian
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
9
|
Tian H, Huang Q, Li L, Liu XX, Zhang Y. Gene expression of ornithine decarboxylase in lung cancers and its clinical significance. Acta Biochim Biophys Sin (Shanghai) 2006; 38:639-45. [PMID: 16953303 DOI: 10.1111/j.1745-7270.2006.00204.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is one of the most lethal cancers in China because of its high incidence and high mortality. Ornithine decarboxylase (ODC), an important enzyme in polyamine biosynthesis, is increased in cancer cells. Some chemotherapeutic agents aimed at reducing ODC expression show inhibitory effects on cancer cell growth, so ODC can be useful in gene diagnosis and gene therapy of cancers. In this study, we examined the effect of antisense ODC on lung cancer cells. A-549 cells were infected with rAd-ODC/Ex3as, a recombinant adenovirus containing the cytomegalovirus promoter, green fluorescent protein gene and 120 bp antisense ODC. The cell cycle was evaluated by flow cytometry. A nude mouse xenograft model was used in the tumorigenicity test. Reverse transcription-polymerase chain reaction, Western blot and immunohistochemistry were used to study the expressions of ODC on lung cancers. It was found that the growth of cells infected with rAd-ODC/Ex3as was substantially inhibited and cells were arrested at G1 phase. Cells infected with rAd-ODC/Ex3as can suppress tumor formation in a nude mouse xenograft model. The expression of ODC mRNA and ODC protein levels in lung cancer tissues was significantly higher than that in normal tissues (P<0.05), which correlated significantly with the stage of lung cancer (P<0.05). This study suggested that rAd-ODC/Ex3as has antitumor activity in human lung cancer cells. The ODC gene might play an important role in lung cancer and the overexpression of ODC might be related to the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Hui Tian
- Department of Thoracic Surgery, Shandong University Qi Lu Hospital, Jinan 250012, China.
| | | | | | | | | |
Collapse
|