1
|
Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Int J Mol Sci 2023; 24:ijms24119363. [PMID: 37298312 DOI: 10.3390/ijms24119363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
2
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
3
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022; 117:e210403. [PMID: 35320824 PMCID: PMC8944189 DOI: 10.1590/0074-02760220403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.
Collapse
Affiliation(s)
- Rubens Lima do Monte Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Paulo Otávio Lourenço Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Alessandra Mara de Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Miguel Antonio do Nascimento Garcia
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Suellen Rodrigues Maran
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Nilmar Silvio Moretti
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022. [DOI: 10.1590/0074-02760210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Exploring the newer oxadiazoles as real inhibitors of human SIRT2 in hepatocellular cancer cells. Bioorg Med Chem Lett 2020; 30:127330. [DOI: 10.1016/j.bmcl.2020.127330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
|
6
|
Corpas-López V, Tabraue-Chávez M, Sixto-López Y, Panadero-Fajardo S, Alves de Lima Franco F, Domínguez-Seglar JF, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, Correa-Basurto J, López-Viota J, López-Viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-Sánchez J, Gómez-Vidal JA. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020; 63:5734-5751. [DOI: 10.1021/acs.jmedchem.9b02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Victoriano Corpas-López
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mavys Tabraue-Chávez
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Sonia Panadero-Fajardo
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Fernando Alves de Lima Franco
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José F. Domínguez-Seglar
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Julián López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Margarita López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | | | | | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de la Salud, 18016 Granada, Spain
| | - Joaquina Martín-Sánchez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| |
Collapse
|
7
|
Cheminformatics Explorations of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:1-35. [PMID: 31621009 DOI: 10.1007/978-3-030-14632-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.
Collapse
|
8
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
9
|
Overexpression of cytoplasmic TcSIR2RP1 and mitochondrial TcSIR2RP3 impacts on Trypanosoma cruzi growth and cell invasion. PLoS Negl Trop Dis 2015; 9:e0003725. [PMID: 25875650 PMCID: PMC4398437 DOI: 10.1371/journal.pntd.0003725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/30/2015] [Indexed: 11/19/2022] Open
Abstract
Background Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives. Inhibition of sirtuins from Trypanosoma brucei and Leishmania ssp. showed promising results, indicating that these enzymes may be considered as targets for drug discovery in parasite infection. Here, we report the first characterization of the two sirtuins present in T. cruzi. Methodology Dm28c epimastigotes that inducibly overexpress TcSIR2RP1 and TcSIR2RP3 were constructed and used to determine their localizations and functions. These transfected lines were tested regarding their acetylation levels, proliferation and metacyclogenesis rate, viability when treated with sirtuin inhibitors and in vitro infectivity. Conclusion TcSIR2RP1 and TcSIR2RP3 are cytosolic and mitochondrial proteins respectively. Our data suggest that sirtuin activity is important for the proliferation of T. cruzi replicative forms, for the host cell-parasite interplay, and for differentiation among life-cycle stages; but each one performs different roles in most of these processes. Our results increase the knowledge on the localization and function of these enzymes, and the overexpressing T. cruzi strains we obtained can be useful tools for experimental screening of trypanosomatid sirtuin inhibitors. Sirtuins are a family of deacetylases, evolutionary conserved from bacteria to mammals. They participate in the regulation of a wide range of nuclear, cytoplasmic and mitochondrial pathways, and are considered pro-life enzymes. In the last years the search for sirtuin inhibitors was a very active field of research, with potential applications in a large number of pathologies, including parasitic diseases. We are interested in the study of the two sirtuins present in the protozoan parasite Trypanosoma cruzi, being our objective to understand their function. First, we determined the localization of these enzymes in the parasite: TcSIR2RP1 is a cytoplasmic enzyme and TcSIR2RP3 localizes in the mitochondrion. When we overexpress cytoplasmic TcSIR2RP1, the transgenic parasites differentiate to metacyclic trypomastigotes and infect mammalian cells more efficiently. In contrast, the overexpression of mitochondrial TcSIR2RP3 does not affect metacyclogenesis but modifies epimastigotes growth and slightly increases the proliferation of the parasite in the intracellular stage. We also used these transgenic lines to test their sensibility to previously described sirtuin inhibitors.
Collapse
|
10
|
Sacconnay L, Smirlis D, Queiroz EF, Wolfender JL, Soares MBP, Carrupt PA, Nurisso A. Structural insights of SIR2rp3 proteins as promising biotargets to fight against Chagas disease and leishmaniasis. MOLECULAR BIOSYSTEMS 2014; 9:2223-30. [PMID: 23799611 DOI: 10.1039/c3mb70180h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypanosoma cruzi and Leishmania spp. are protozoan pathogens responsible for Chagas disease and leishmaniasis, respectively. Current therapies rely only on a very small number of drugs, most of them are inadequate because of their severe host toxicity or drug-resistance phenomena. In order to find therapeutic alternatives, the identification of new biotargets is highly desired. In this study, homology modelling, docking and molecular dynamics simulations have been used to generate robust 3D models of NAD(+)-dependent deacetylases from Trypanosoma and Leishmania spp., known as SIR2rp3, whose structures have never been described before. Molecular docking of known inhibitors revealed strong analogies with the mitochondrial human SIRT5 in terms of binding mode and interaction strength. On the other hand, by extending the analysis to the channel rims, regions of difference between host and parasitic targets, useful for future selective drug design projects, were pointed out.
Collapse
Affiliation(s)
- Lionel Sacconnay
- Pharmacochemistry and Phytochemistry & Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Taylor RGD, Yeo BR, Hallett AJ, Kariuki BM, Pope SJA. An organometallic complex revealing an unexpected, reversible, temperature induced SC–SC transformation. CrystEngComm 2014. [DOI: 10.1039/c4ce00070f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A reversible, temperature driven phase transformation that takes place at ca. 180 K, in a single-crystal to single-crystal manner, has been observed for a monometallic transition metal coordination complex based on a fac-Re(CO)3 core, with a chelated 2,2′-bipyridine unit and a halogenated N-(4-iodophenyl)nicotinamide axial co-ligand.
Collapse
|
12
|
Zheng W. Sirtuins as emerging anti-parasitic targets. Eur J Med Chem 2013; 59:132-40. [DOI: 10.1016/j.ejmech.2012.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
13
|
Costa Lima SA, Resende M, Silvestre R, Tavares J, Ouaissi A, Lin PKT, Cordeiro-da-Silva A. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine (Lond) 2012; 7:1839-49. [PMID: 22812711 DOI: 10.2217/nnm.12.74] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To overcome the limitation of bisnaphthalimidopropyldiaaminooctane (BNIPDaoct) low physiological solubility and potentially increase its efficiency against visceral leishmaniasis (VL), a delivery system based on poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was developed. MATERIALS & METHODS BNIPDaoct-PLGA nanoparticles were prepared by nanoprecipitation and characterized. Anti-Leishmania activity was evaluated using in vitro and in vivo VL infection models. RESULTS BNIPDaoct-PLGA nanoparticles were successfully produced and were sized at 156.0 ± 2.8 nm with an encapsulation efficiency of approximately 85%. The PLGA nanoparticles reduced BNIPDaoct cellular toxicity, retained its in vitro anti-leishmanial activity and led to a significant reduction (∼80%) in the parasite burden in the infected mice spleen when compared with the free drug or amphotericin B. In the liver the effect was less pronounced, with a 30-50% reduction observed between the nanoformulation and the BNIPDaoct per se or the amphotericin B, respectively. CONCLUSION PLGA nanoparticles provide controlled and effective delivery of BNIPDaoct for treatment of VL.
Collapse
Affiliation(s)
- Sofia A Costa Lima
- IBMC-INEB, Infection & Immunology Unit-Parasite Disease Group, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pierce RJ, Dubois-Abdesselem F, Caby S, Trolet J, Lancelot J, Oger F, Bertheaume N, Roger E. Chromatin regulation in schistosomes and histone modifying enzymes as drug targets. Mem Inst Oswaldo Cruz 2012; 106:794-801. [PMID: 22124550 DOI: 10.1590/s0074-02762011000700003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.
Collapse
|
15
|
Soares MB, Silva CV, Bastos TM, Guimarães ET, Figueira CP, Smirlis D, Azevedo WF. Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop 2012; 122:224-9. [PMID: 22281243 DOI: 10.1016/j.actatropica.2012.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/13/2011] [Accepted: 01/01/2012] [Indexed: 11/25/2022]
Abstract
Inhibition of Trypanosoma brucei and Leishmania spp. sirtuins has shown promising antiparasitic activity, indicating that these enzymes may be used as targets for drug discovery against trypanosomatid infections. In the present work we carried out a virtual screening focused on the C pocket of Sir2 from Trypanosoma cruzi. Using this approach, the best ligand found was nicotinamide. In vitro tests confirmed the anti-T. cruzi activity of nicotinamide on epimastigote and trypomastigote forms. Moreover, treatment of T. cruzi-infected macrophages with nicotinamide caused a significant reduction in the number of amastigotes. In addition, alterations in the mitochondria and an increase in the vacuolization in the cytoplasm were observed in epimastigotes treated with nicotinamide. Analysis of the complex of Sir2 and nicotinamide revealed the details of the possible ligand-target interaction. Our data reveal a potential use of TcSir2 as a target for anti-T. cruzi drug discovery.
Collapse
|
16
|
Mocilac P, Lough AJ, Gallagher JF. Structures and conformational analysis of a 3 × 3 isomer grid of nine N-(fluorophenyl)pyridinecarboxamides. CrystEngComm 2011. [DOI: 10.1039/c0ce00326c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Brylinski M, Skolnick J. FINDSITE: a threading-based approach to ligand homology modeling. PLoS Comput Biol 2009; 5:e1000405. [PMID: 19503616 PMCID: PMC2685473 DOI: 10.1371/journal.pcbi.1000405] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Ligand virtual screening is a widely used tool to assist in new pharmaceutical discovery. In practice, virtual screening approaches have a number of limitations, and the development of new methodologies is required. Previously, we showed that remotely related proteins identified by threading often share a common binding site occupied by chemically similar ligands. Here, we demonstrate that across an evolutionarily related, but distant family of proteins, the ligands that bind to the common binding site contain a set of strongly conserved anchor functional groups as well as a variable region that accounts for their binding specificity. Furthermore, the sequence and structure conservation of residues contacting the anchor functional groups is significantly higher than those contacting ligand variable regions. Exploiting these insights, we developed FINDSITE(LHM) that employs structural information extracted from weakly related proteins to perform rapid ligand docking by homology modeling. In large scale benchmarking, using the predicted anchor-binding mode and the crystal structure of the receptor, FINDSITE(LHM) outperforms classical docking approaches with an average ligand RMSD from native of approximately 2.5 A. For weakly homologous receptor protein models, using FINDSITE(LHM), the fraction of recovered binding residues and specific contacts is 0.66 (0.55) and 0.49 (0.38) for highly confident (all) targets, respectively. Finally, in virtual screening for HIV-1 protease inhibitors, using similarity to the ligand anchor region yields significantly improved enrichment factors. Thus, the rather accurate, computationally inexpensive FINDSITE(LHM) algorithm should be a useful approach to assist in the discovery of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Michal Brylinski
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Structural analysis of trypanosomal sirtuin: an insight for selective drug design. Mol Divers 2009; 14:169-78. [DOI: 10.1007/s11030-009-9147-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/27/2009] [Indexed: 10/27/2022]
|
19
|
Uciechowska U, Schemies J, Neugebauer RC, Huda EM, Schmitt ML, Meier R, Verdin E, Jung M, Sippl W. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem 2009; 3:1965-76. [PMID: 18985648 DOI: 10.1002/cmdc.200800104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
NAD+-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysine residues in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of these enzymes and may be future drugs for the treatment of cancer or neurodegenerative diseases. Herein we present the results from a protein-based virtual screen of a commercial database with subsequent biological testing of the most promising compounds. The combination of docking and in vitro experimental testing resulted in the identification of novel sirtuin inhibitors with thiobarbiturate structure. To rationalize the experimental results, free-energy calculations were carried out by molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations. A significant correlation between calculated binding free energies and measured Sirt2 inhibitory activities was observed. The analyses suggested a molecular basis for the interaction of the identified thiobarbiturate derivatives with human Sirt2. Based on the docking and MM-PBSA calculations we synthesized and tested five further thiobarbiturates. The MM-PBSA method correctly predicted the activity of the novel thiobarbiturates. The identified compounds will be used to further explore the therapeutic potential of sirtuin inhibitors.
Collapse
Affiliation(s)
- Urszula Uciechowska
- Martin-Luther Universität Halle-Wittenberg, Department of Pharmaceutical Chemistry, Wolfgang-Langenbeckstr. 4, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|