1
|
Kremer R, Williams A, Wardlaw J. Endothelial cells as key players in cerebral small vessel disease. Nat Rev Neurosci 2025; 26:179-188. [PMID: 39743557 DOI: 10.1038/s41583-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Cerebral small vessel disease (SVD) is a vascular disorder that increases the risk of stroke and dementia and is diagnosed through brain MRI. Current primary prevention and secondary treatment of SVD are focused on lifestyle interventions and vascular risk factor control, including blood pressure reduction. However, these interventions have limited effects, a proportion of individuals with sporadic SVD do not have hypertension, and SVD shows strong familial and genetic underpinnings. Here, we describe the increasing evidence that cerebral endothelial cell dysfunction is a key mechanism of SVD. Dysfunctional endothelial cells can cause cerebral blood vessel dysfunction, alter blood-brain barrier integrity and interfere with cell-cell interactions in the neuro-glial-vascular unit, thereby causing damage to adjacent brain tissue. Endothelial cells in SVD may become dysfunctional through intrinsic mechanisms via genetic vulnerability to SVD and/or via extrinsic factors such as hypertension, smoking and diabetes. Drugs that act on endothelial pathways are already looking promising in clinical trials, and understanding their action on endothelial cells and the surrounding brain may lead to the development of other therapies to limit disease progression and improve outcomes for individuals with SVD.
Collapse
Affiliation(s)
- Ronja Kremer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Bartsch BL, Hazen EM, Montgomery RN, Trieu C, Britton-Carpenter AJ, Billinger SA. Peripheral vascular function in stroke: systematic review and meta-analysis. J Appl Physiol (1985) 2024; 136:1182-1194. [PMID: 38482571 PMCID: PMC11368525 DOI: 10.1152/japplphysiol.00601.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral vascular dysfunction, measured as flow-mediated dilation (FMD), is present across all phases of stroke recovery and elevates the risk for recurrent cardiovascular events. The objective of this systematic review and meta-analysis was to characterize baseline FMD in individuals' poststroke, with consideration for each phase of stroke recovery. Three databases (PubMed, CINAHL, and Embase) were searched between January 1, 2000 and October 12, 2023 for studies that examined baseline FMD in stroke. Three reviewers conducted abstract and full-text screening, data extraction, and quality assessment. A random effects model was used to estimate FMD across studies. Meta-regression was used to examine the impact of age and time since stroke (acute, subacute, chronic) on FMD. Twenty-eight studies with ischemic and hemorrhagic stroke were included. Descriptive statistics for the demographics and FMD values of each study are presented. For the meta-analysis, average estimate FMD was 3.9% (95% CI: 2.5-5.3%). We report a large amount of heterogeneity (Cochrane's Q P value <0.001, and I2 = 99.6%). Differences in average age and the time poststroke between studies were not significantly associated with differences in FMD values. Despite the large heterogeneity for FMD values across studies, our primary finding suggests that FMD remains impaired across all phases of stroke.NEW & NOTEWORTHY This systematic review and meta-analysis offers invaluable insight into poststroke vascular function. Despite the inherent heterogeneity among the 28 studies analyzed, we report that peripheral vascular dysfunction, as quantified by flow-mediated dilation, exists across all stages of stroke recovery. This finding underscores the importance for interventions that focus on improving vascular health and secondary stroke prevention.
Collapse
Affiliation(s)
- Bria L Bartsch
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Emily M Hazen
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Calvin Trieu
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | | | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
3
|
Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, Ade CJ. Associations of Cerebrovascular Regulation and Arterial Stiffness With Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032616. [PMID: 37930079 PMCID: PMC10727345 DOI: 10.1161/jaha.123.032616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.
Collapse
Affiliation(s)
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKSUSA
| | | | | | | | - Jia Liang
- Department of Biostatistics, St. Jude Children’s Research HospitalMemphisTNUSA
| | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKSUSA
- Department of Physician’s Assistant Studies, Kansas State UniversityManhattanKSUSA
- Johnson Cancer Research CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|
4
|
Yang YH, Li SS, Wang YC, Yu LL, Zhu HH, Wu JH, Yu WK, An L, Yuan WX, Ji Y, Xu YM, Gao Y, Li YS. Correlation between neutrophil gelatinase phase lipocalin and cerebral small vessel disease. Front Neurol 2023; 14:1177479. [PMID: 37521280 PMCID: PMC10375489 DOI: 10.3389/fneur.2023.1177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Background Cerebral small vessel disease (CSVD) is common in the elderly population. Neutrophil gelatinase-associated lipocalin (NGAL) is closely related to cardiovascular and cerebrovascular diseases. NGAL causes pathological changes, such as damage to the vascular endothelium, by causing inflammation, which results in other related diseases. The purpose of this study was to investigate whether serum NGAL levels could predict disease severity in patients with CSVD. Methods The patients with CSVD who visited the Department of Neurology at the First Affiliated Hospital of Zhengzhou University between January 2018 and June 2022 were prospectively included. The total CSVD burden score was calculated using whole-brain magnetic resonance imaging (MRI), and the patients were divided into a mild group (total CSVD burden score < 2 points) and a severe group (total CSVD burden score ≥ 2 points). Age, sex, height, smoking and alcohol consumption history, medical history, and serological results of patients were collected to perform the univariate analysis. Multivariate logistic regression was used to analyze the risk factors that affect CSVD severity. The multiple linear regression method was used to analyze which individual CSVD markers (periventricular white matter hyperintensities, deep white matter hyperintensities, lacune, and cerebral microbleed) play a role in the association between total CSVD burden score and NGAL. Results A total of 427 patients with CSVD (140 in the mild group and 287 in the severe group) were included in the study. A multivariate logistic regression analysis showed that the following factors were significantly associated with CSVD severity: male sex [odds ratio(OR), 1.912; 95% confidence interval (CI), 1.150-3.179], age (OR, 1.046; 95% CI, 1.022-1.070), history of cerebrovascular disease (OR, 3.050; 95% CI, 1.764-5.274), serum NGAL level (OR, 1.005; 95% CI, 1.002-1.008), and diabetes (OR, 2.593; 95% CI, 1.424-4.722). A multivariate linear regression shows that periventricular white matter hyperintensities and cerebral microbleed are associated with serum NGAL concentrations (P < 0.05). Conclusion Serum NGAL level is closely related to CSVD severity and is a risk factor for the burden of CSVD brain damage. Serum NGAL has high specificity in reflecting the severity of CSVD.
Collapse
|
5
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ma H, Yang Y, Gao M, He Q, Zhao D, Luo J, Wang S. A novel rat model of cerebral small vessel disease and evaluation by super-resolution ultrasound imaging. J Neurosci Methods 2022; 379:109673. [PMID: 35835394 DOI: 10.1016/j.jneumeth.2022.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Cerebral small vessel disease (CSVD), which causes cognitive, functional and emotional decline, is related to stroke events, and it is a major cause of Alzheimer's disease. In the social context of an aging population, the incidence of CSVD is on the rise yearly, and the exact pathogenesis is still controversial and remains unclear. Exploring the pathological mechanism of CSVD on the histological level using animal models is important for the investigation of new clinical diagnostic methods and treatment options. The existing surgical CSVD model preparation methods are difficult to operate and cannot control the injury location or degree. This study used ultrasound combined with microbubbles (MBs) to induce an easy-to-operate and non-invasive animal model of CSVD with controllable location and degree. The rat model was evaluated from the perspective of histology, ethology, and imageology, respectively. In addition, we utilized super-resolution ultrasound imaging (SR-US) technology to directly observe the microvessels of the model. The histological results showed that the modeling was successful in the preset position, and neurology deficits were observed in 62.5% of 8 rats. The SR-US results of one rat showed that compared with the non-sonication region, the number of cerebral small blood vessels discovered in the sonication area was reduced (43 vs 11), the blood flow speed decreased significantly (p 0.001), and blood flow volume decreased (144.7 vs 11.7 μL/s) because of vasoconstriction. This study provides a new modeling method with controllable damage location and degree for the study of CSVD, and SR-US is found to be an effective evaluation method, which can directly assess the hemodynamic changes of CSVD in vivo.
Collapse
Affiliation(s)
- Huide Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Yi Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mengze Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Duo Zhao
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Ordos Central Hospital, Ordos, Inner Mongolia 017000, China.
| |
Collapse
|
7
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:2445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (T.D.C.); (A.D.C.); (M.D.); (S.S.); (R.L.N.); (M.G.P.); (R.S.); (A.P.)
| |
Collapse
|
8
|
Li S, Li G, Luo X, Huang Y, Wen L, Li J. Endothelial Dysfunction and Hyperhomocysteinemia-Linked Cerebral Small Vessel Disease: Underlying Mechanisms and Treatment Timing. Front Neurol 2021; 12:736309. [PMID: 34899561 PMCID: PMC8651556 DOI: 10.3389/fneur.2021.736309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (cSVD)—a common cause of stroke and vascular dementia—is a group of clinical syndromes that affects the brain's small vessels, including arterioles, capillaries, and venules. Its pathogenesis is not fully understood, and effective treatments are limited. Increasing evidence indicates that an elevated total serum homocysteine level is directly and indirectly associated with cSVD, and endothelial dysfunction plays an active role in this association. Hyperhomocysteinemia affects endothelial function through oxidative stress, inflammatory pathways, and epigenetic alterations at an early stage, even before the onset of small vessel injuries and the disease. Therefore, hyperhomocysteinemia is potentially an important therapeutic target for cSVD. However, decreasing the homocysteine level is not sufficiently effective, possibly due to delayed treatment, which underlying reason remains unclear. In this review, we examined endothelial dysfunction to understand the close relationship between hyperhomocysteinemia and cSVD and identify the optimal timing for the therapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Staszewski J, Dȩbiec A, Skrobowska E, Stȩpień A. Cerebral Vasoreactivity Changes Over Time in Patients With Different Clinical Manifestations of Cerebral Small Vessel Disease. Front Aging Neurosci 2021; 13:727832. [PMID: 34744687 PMCID: PMC8563577 DOI: 10.3389/fnagi.2021.727832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives: Endothelial dysfunction (ED) has been linked to the pathogenesis of cerebral small vessel disease (SVD). We aimed to assess ED and cerebrovascular reactivity (CVR) in the patients with a diverse manifestation of SVD, with similar and extensive white matter lesions (WMLs, modified Fazekas scale grade ≥2), compared with a control group (CG) without the MRI markers of SVD, matched for age, gender, hypertension, diabetes, and to evaluate the change of CVR following 24 months. Methods: We repeatedly measured the vasomotor reactivity reserve (VMRr) and breath-holding index (BHI) of the middle cerebral artery (MCA) by the transcranial Doppler ultrasound (TCD) techniques in 60 subjects above 60 years with a history of lacunar stroke (LS), vascular dementia (VaD), or parkinsonism (VaP) (20 in each group), and in 20 individuals from a CG. Results: The mean age, frequency of the main vascular risk factors, and sex distribution were similar in the patients with the SVD groups and a CG. The VMRr and the BHI were more severely impaired at baseline (respectively, 56.7 ± 18% and 0.82 ± 0.39) and at follow-up (respectively, 52.3 ± 16.7% and 0.71 ± 0.38) in the patients with SVD regardless of the clinical manifestations (ANOVA, p > 0.1) than in the CG (respectively, baseline VMRr 77.2 ± 15.6%, BHI 1.15 ± 0.47, p < 0.001; follow-up VMRr 74.3 ± 17.6%, BHI 1.11 ± 0.4, p < 0.001). All the assessed CVR measures (VMRr and BHI) significantly decreased over time in the subjects with SVD (Wilcoxon's signed-rank test p = 0.01), but this was not observed in the CG (p > 0.1) and the decrease of CVR measures was not related to the SVD radiological progression (p > 0.1). Conclusions: This study provided evidence that the change in CVR measures is detectable over a 24-month period in patients with different clinical manifestations of SVD. Compared with the patients in CG with similar atherothrombotic risk factors, all the CVR measures (BMRr and BHI) significantly declined over time in the subjects with SVD. The reduction in CVR was not related to the SVD radiological progression.
Collapse
Affiliation(s)
- Jacek Staszewski
- Military Institute of Medicine, Clinic of Neurology, Warsaw, Poland
| | | | - Ewa Skrobowska
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stȩpień
- Military Institute of Medicine, Clinic of Neurology, Warsaw, Poland
| |
Collapse
|
10
|
Lee BC, Tsai HH, Huang APH, Lo YL, Tsai LK, Chen YF, Wu WC. Arterial Spin Labeling Imaging Assessment of Cerebrovascular Reactivity in Hypertensive Small Vessel Disease. Front Neurol 2021; 12:640069. [PMID: 34276531 PMCID: PMC8278327 DOI: 10.3389/fneur.2021.640069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: Cerebrovascular reactivity (CVR) represents the phenomenon where cerebral vessels dilate or constrict in response to vasoactive stimuli. CVR impairment may contribute to brain injury due to cerebral small vessel disease (SVD). We aimed to determine the CVR in hypertensive intracerebral hemorrhage (ICH) and to identify its vascular dysfunction. Methods: A total of 21 patients with spontaneous hypertensive ICH (strictly deep or mixed deep and lobar hemorrhages, mean age 62.5 ± 11.3 years) and 10 control subjects (mean age 66.1 ± 6.0 years) were enrolled for CVR measurement at least 3 months after the symptomatic ICH event. Each participant underwent a brain MRI study, and CVR was calculated as the cerebral blood flow (CBF) reduction using arterial spin labeling (ASL) between baseline and 10 min after an intravenous dipyridamole injection (0.57 mg/kg). Traditional MRI markers for SVD were also evaluated, including cerebral microbleed, white matter hyperintensity, lacune, and MRI-visible enlarged perivascular space, which were used to determine the total small vessel disease score. Results: Compared to control subjects, hypertensive ICH patients showed reduced CVR in the basal ganglia (CBF reduction 22.4 ± 22.7% vs. 41.7 ± 18.3, p = 0.026), the frontal lobe (15.1 ± 11.9 vs. 26.6 ± 9.9, p = 0.013), and the temporal lobe (14.7 ± 11.1 vs. 26.2 ± 10.0, p = 0.010). These differences remained significant in multivariable models after adjusting for age and sex. Within ICH groups, the CBF reduction in the basal ganglia was significantly correlated with the total small vessel disease score (R = 0.58, p = 0.006), but not with individual MRI markers. Conclusion: Patients with advanced hypertensive SVD demonstrated impaired vasoconstriction after dipyridamole challenge in the basal ganglia and the frontal and temporal lobes. Our findings provide safe approaches for whole-brain CVR mapping in SVD and identify a potential physiological basis for vascular dysfunction in hypertensive SVD.
Collapse
Affiliation(s)
- Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ling Lo
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:632131. [PMID: 33718454 PMCID: PMC7943466 DOI: 10.3389/fcvm.2021.632131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.
Collapse
Affiliation(s)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Suhaila Idris
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Lee Si Yuen
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wong Jia Hui
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Malaysia
| | - Chuang Huei Gau
- Department of Psychology and Counselling, Faculty of Arts and Social Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, University of Queensland (UQ), Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Yuri Na
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Linqing Feng
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, National Health and Medical Research Council (NHMRC), Heidelberg, VIC, Australia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian, Malaysia
| |
Collapse
|
12
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:2051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
13
|
Quick S, Moss J, Rajani RM, Williams A. A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends Neurosci 2020; 44:289-305. [PMID: 33308877 DOI: 10.1016/j.tins.2020.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/24/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The blood vessels of the brain are lined with endothelial cells and it has been long known that these help to regulate blood flow to the brain. However, there is increasing evidence that these cells also interact with the surrounding brain tissue. These interactions change when the endothelial cells become dysfunctional and have an impact in diseases such as cerebral small vessel disease, the leading cause of vascular dementia. In this review, we focus on what endothelial dysfunction is, what causes it, how it leads to surrounding brain pathology, how researchers can investigate it with current models, and where this might lead in the future for dementia therapies.
Collapse
Affiliation(s)
- Sophie Quick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
14
|
Lee MJ, Moon S, Cho S, Chung JW, Seo WK, Bang OY, Kim GM, Chung CS. Mechanisms Involved in Lacunar Infarction and Their Role in Early Neurological Deterioration. ACTA ACUST UNITED AC 2020. [DOI: 10.31728/jnn.2020.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Toya T, Sara JD, Ahmad A, Nardi V, Taher R, Lerman LO, Lerman A. Incremental Prognostic Impact of Peripheral Microvascular Endothelial Dysfunction on the Development of Ischemic Stroke. J Am Heart Assoc 2020; 9:e015703. [PMID: 32319335 PMCID: PMC7428575 DOI: 10.1161/jaha.119.015703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Peripheral microvascular endothelial dysfunction (PMED) has been linked to an increased risk of cardiovascular events, but there is a lack of information characterizing the predictive value of PMED for future risk of ischemic stroke (IS). Methods and Results This retrospective observational cohort study enrolled 637 patients who underwent non‐invasive microvascular endothelial function assessment using reactive hyperemia peripheral arterial tonometry. Reactive hyperemia peripheral arterial tonometry index ≤2 was defined as PMED. Of 280 patients with PMED, 12 (4.3%) patients developed IS, compared with only 4 (1.1%) of 357 patients without PMED during a median follow‐up of 5.3 years. Patients with PMED had lower IS‐free survival compared with patients without PMED (log‐rank P=0.03). Cox proportional hazard ratio (HR) analyses showed that PMED predicted the incidence of IS, with a HR of 3.43, 95% CI, 1.10–10.63 (P=0.03); adjusted HR of 3.70, 95% CI, 1.18–11.59 (P=0.02) after adjusting for sex, smoking history, and atrial fibrillation; adjusted HR of 3.45, 95% CI, 1.11–10.72 (P=0.03) after adjusting for CHA2DS2‐VASc score; adjusted HR of 5.70, 95% CI, 1.40–23.29 (P=0.02) after adjusting for revised Framingham Stroke Risk Score. Reactive hyperemia peripheral arterial tonometry index improved discrimination of risk for IS after adding reactive hyperemia peripheral arterial tonometry index to CHA2DS2‐VASc score and revised Framingham Stroke Risk Score. Conclusions PMED was associated with a >3‐fold increased risk of IS. These findings underscore the concept of the systemic nature of endothelial dysfunction, which could act as a potential marker to predict future risk of IS.
Collapse
Affiliation(s)
- Takumi Toya
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN.,Division of Cardiology National Defense Medical College Tokorozawa Saitama Japan
| | | | - Ali Ahmad
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Valentina Nardi
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Riad Taher
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension Mayo Clinic Rochester MN
| | - Amir Lerman
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| |
Collapse
|
16
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
17
|
Gutierrez J, Gil-Guevara A, Ramaswamy S, DeRosa J, Di Tullio MR, Cheung K, Rundek T, Sacco RL, Wright CB, Elkind MSV. Classification of Covert Brain Infarct Subtype and Risk of Death and Vascular Events. Stroke 2019; 51:90-98. [PMID: 31766980 DOI: 10.1161/strokeaha.119.026068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- To test the hypothesis that covert brain infarcts (CBIs) are more likely to be located in noneloquent brain areas compared with clinical strokes and that CBI etiological subtypes carry a differential risk of vascular events compared with people without CBI. Methods- We used brain magnetic resonance imaging from 1290 stroke-free participants in the NOMAS (Northern Manhattan Study) to evaluate for CBI. We classified CBI as cardioembolic (ie, known atrial fibrillation), large artery atherosclerosis (extracranial and intracranial), penetrating artery disease, and cryptogenic (no apparent cause). CBI localized in the nonmotor areas of the right hemisphere were considered noneloquent. We then evaluated risk of events by CBI subtype with adjusted Cox proportional models. Results- At the time of magnetic resonance imaging, 236 participants (18%) had CBI (144 [61%] distal cryptogenic, 29 [12%] distal cardioembolic, 26 [11%] large artery atherosclerosis, and 37 [16%] penetrating artery disease). Smaller (per mm, odds ratio, 0.8 [0.8-0.9]) and nonbrain stem infarcts (odds ratio, 0.2 [0.1-0.6]) were more likely to be covert. During the follow-up period (10.4±3.1 years), 398 (31%) died (162 [13%] of vascular death) and 117 (9%) had a stroke (99 [85%]) were ischemic. Risks of events varied by CBI subtype, with the highest risk of stroke (hazard ratio, 2.2 [1.3-3.7]) and vascular death (hazard ratio, 2.24 [1.29-3.88]) noted in participants with intracranial large artery atherosclerosis-related CBI. Conclusions- CBI can be classified into subtypes that have differential outcomes. Certain CBI subtypes such as those related to intracranial large artery atherosclerosis have a high risk of adverse vascular outcomes and could warrant consideration of treatment trials.
Collapse
Affiliation(s)
- Jose Gutierrez
- From the Department of Neurology (J.G., S.R., J.D., M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | | | - Srinath Ramaswamy
- From the Department of Neurology (J.G., S.R., J.D., M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Janet DeRosa
- From the Department of Neurology (J.G., S.R., J.D., M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Marco R Di Tullio
- Department of Cardiology (M.R.D.T.), Mailman School of Public Health, Columbia University, New York, NY
| | - Ken Cheung
- Division of Biostatistics (K.C.), Mailman School of Public Health, Columbia University, New York, NY
| | - Tatjana Rundek
- Departments of Neurology (T.R., R.L.S.), University of Miami Miller School of Medicine, FL.,Public Health Sciences (T.R., R.L.S.), University of Miami Miller School of Medicine, FL.,Evelyn F. McKnight Brain Institute (T.R., R.L.S.), University of Miami Miller School of Medicine, FL
| | - Ralph L Sacco
- Departments of Neurology (T.R., R.L.S.), University of Miami Miller School of Medicine, FL.,Public Health Sciences (T.R., R.L.S.), University of Miami Miller School of Medicine, FL.,Evelyn F. McKnight Brain Institute (T.R., R.L.S.), University of Miami Miller School of Medicine, FL
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (C.B.W.)
| | - Mitchell S V Elkind
- From the Department of Neurology (J.G., S.R., J.D., M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY.,Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
18
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Heo JI, Kim KI, Woo SK, Kim JS, Choi KJ, Lee HJ, Kim KS. Stromal Cell-Derived Factor 1 Protects Brain Vascular Endothelial Cells from Radiation-Induced Brain Damage. Cells 2019; 8:cells8101230. [PMID: 31658727 PMCID: PMC6830118 DOI: 10.3390/cells8101230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/03/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) and its main receptor, CXC chemokine receptor 4 (CXCR4), play a critical role in endothelial cell function regulation during cardiogenesis, angiogenesis, and reendothelialization after injury. The expression of CXCR4 and SDF-1 in brain endothelial cells decreases due to ionizing radiation treatment and aging. SDF-1 protein treatment in the senescent and radiation-damaged cells reduced several senescence phenotypes, such as decreased cell proliferation, upregulated p53 and p21 expression, and increased senescence-associated beta-galactosidase (SA-β-gal) activity, through CXCR4-dependent signaling. By inhibiting extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription protein 3 (STAT3), we confirmed that activation of both is important in recovery by SDF-1-related mechanisms. A CXCR4 agonist, ATI2341, protected brain endothelial cells from radiation-induced damage. In irradiation-damaged tissue, ATI2341 treatment inhibited cell death in the villi of the small intestine and decreased SA-β-gal activity in arterial tissue. An ischemic injury experiment revealed no decrease in blood flow by irradiation in ATI2341-administrated mice. ATI2341 treatment specifically affected CXCR4 action in mouse brain vessels and partially restored normal cognitive ability in irradiated mice. These results demonstrate that SDF-1 and ATI2341 may offer potential therapeutic approaches to recover tissues damaged during chemotherapy or radiotherapy, particularly by protecting vascular endothelial cells.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34054, Korea.
| | - Kwang Il Kim
- Divisions of Radio-Isotope Applied Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sang-Keun Woo
- Divisions of Radio-Isotope Applied Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Joong Sun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyu Jin Choi
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hae-June Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34054, Korea.
| |
Collapse
|
20
|
Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review. JAMA Neurol 2019; 75:1273-1281. [PMID: 30167649 DOI: 10.1001/jamaneurol.2018.1073] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Stroke is the second leading cause of death in the world, and nearly one-third of ischemic strokes are lacunar strokes (LSs) or small subcortical infarcts. Although smaller in size, they create large problems, leaving many patients with intellectual and physical disabilities. Because there are limitations in understanding the underlying pathophysiology of LS, the development of novel therapies has been slow. Observations When the term lacune was described in the 1800s, its underlying pathophysiological basis was obscure. In the 1960s, C. Miller Fisher, MD, performed autopsy studies that showed that vessels supplying lacunes displayed segmental arteriolar disorganization, characterized by vessel enlargement, hemorrhage, and fibrinoid deposition. For these pathologic changes, he coined the term lipohyalinosis. Since that time, few attempts have been made to reconcile this pathologic description with modern mechanisms of cerebral small vessel disease (CSVD). During the past 6 years, progress has been made in understanding the clinical mechanisms, imaging characteristics, and genetic basis of LS. Conclusions and Relevance Questions persist regarding the order of events related to the initiation and progression of CSVD, how LS is related to other sequelae of CSVD, and whether LS is part of a systemic disease process. The relative roles of aging, oxidative stress, mechanical stress, genetic predisposition, and other vascular risk factors should be further studied, especially in the era of widespread antihypertensive use. Although understanding of endothelial dysfunction has increased, future work on the role of media and adventitial dysfunction should be explored. Recent advances in mapping the brain vasculome may generate new hypotheses. The investigation of new therapeutic targets, aimed at reversing CSVD processes and promoting neural repair after LS, depends upon further understanding these basic mechanisms.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Louis R Caplan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Al‐Khazraji BK, Badrov MB, Kadem M, Lingum NR, Birmingham TB, Shoemaker JK. Exploring Cerebrovascular Function in Osteoarthritis: "Heads-up". Physiol Rep 2019; 7:e14212. [PMID: 31660705 PMCID: PMC6817995 DOI: 10.14814/phy2.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
Individuals with osteoarthritis (OA) are at greater risk of cardiovascular and cerebrovascular incidents; yet, cerebrovascular control remains uncharacterized. Our primary outcome was to acquire cerebrovascular control metrics in patients with OA and compare measures to healthy control adults (CTL) without OA or cardiovascular complications. Our primary covariate was a 10-year risk factor for cardiovascular and stroke incidents, and secondary covariates were other cardiovascular disease risk factors (i.e., body mass index, carotid intima media thickness, and brachial flow-mediated dilation). Our secondary outcomes were to assess anatomical and functional changes that may be related to cerebrovascular reactivity were also acquired such as white matter lesion volume and brief cognitive assessments. In 25 adults (n = 13 CTL, n = 12 OA), under hypercapnia, magnetic resonance imaging (3T) was used to acquire a "Global Cerebrovascular Reactivity" index across the larger intracranial cerebral arteries and white matter lesions, and transcranial Doppler was used for both middle cerebral artery hemodynamic responses to hypercapnia and to assess autoregulation via a sit-to-stand task. Compared to CTL, OA had lower "Global Cerebrovascular Reactivity" index responses to hypercapnia, autoregulatory responses, and greater white matter lesions (P < 0.05). These differences persisted after covarying for the outlined primary and secondary covariates. Patients with OA, in the absence of known cardiovascular disease, can exhibit pre-clinical and impaired (compared to CTL) peripheral and cerebrovascular control metrics.
Collapse
Affiliation(s)
- Baraa K. Al‐Khazraji
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
| | - Mark B. Badrov
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Mason Kadem
- Brain and Mind InstituteWestern UniversityLondonOntarioCanada
| | - Navena R. Lingum
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Trevor B. Birmingham
- School of Physical TherapyFaculty of Health SciencesWestern OntarioLondon, OntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
| | - Joel Kevin Shoemaker
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
22
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Staszewski J, Skrobowska E, Piusińska-Macoch R, Brodacki B, Stępień A. Cerebral and Extracerebral Vasoreactivity in Patients With Different Clinical Manifestations of Cerebral Small-Vessel Disease: Data From the Significance of Hemodynamic and Hemostatic Factors in the Course of Different Manifestations of Cerebral Small-Vessel Disease Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:975-987. [PMID: 30208231 DOI: 10.1002/jum.14782] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Endothelial dysfunction has been implicated in the pathogenesis of cerebral small-vessel disease (SVD). Little is known about the relationship between SVD and measures of endothelium-dependent vasodilatation and cerebral vasomotor reactivity. The aim of this study was to evaluate cerebral and extracerebral endothelial dysfunction in patients with different manifestations of SVD and to assess the relationship between endothelial dysfunction and radiologic markers of SVD. METHODS The vasomotor reactivity reserve (VMRr), breath-holding index (BHI) of the middle cerebral arteries, and brachial artery flow-mediated dilatation (FMD) were measured with ultrasound techniques in 90 patients (30 in each group) older than 60 years with extensive white matter lesions (Fazekas grade ≥ 2) with a history of lacunar stroke, vascular dementia, or parkinsonism and 30 individuals with normal magnetic resonance imaging findings (control group). All groups were matched for age, sex, hypertension, and diabetes. RESULTS The mean age ± SD (71.8 ± 3.4 versus 71.7 ± 3.4 years), sex distribution, and prevalence of the main vascular risk factors were similar in the SVD and control groups. The VMRr (56.6% ± 18.3% versus 77.1% ± 16.9%), BHI (0.8 ± 0.3 versus 1.1 ± 0.4), and FMD (5.8% ± 4 versus 12.1% ± 5.2%) were severely impaired in the SVD groups compared to the control group (P < .01). The vascular responses to all tests was similar in the SVD groups, but they were significantly decreased in patients with severe white matter lesions, marked brain atrophy, and enlarged perivascular spaces. CONCLUSIONS This study was the first that simultaneously evaluated cerebral and extracerebral vasodilator responses in a well-phenotyped cohort of patients with lacunar stroke, vascular dementia, or parkinsonism. The VMRr, BHI, and FMD were more severely impaired in patients with SVD, regardless of its clinical manifestation, than in control participants. All measures were significantly lower in patients with severe white-matter lesions, brain atrophy, or enlarged perivascular spaces.
Collapse
Affiliation(s)
| | - Ewa Skrobowska
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | |
Collapse
|
24
|
Cuadrado-Godia E, Dwivedi P, Sharma S, Ois Santiago A, Roquer Gonzalez J, Balcells M, Laird J, Turk M, Suri HS, Nicolaides A, Saba L, Khanna NN, Suri JS. Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. J Stroke 2018; 20:302-320. [PMID: 30309226 PMCID: PMC6186915 DOI: 10.5853/jos.2017.02922] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cerebral small vessel disease (cSVD) has a crucial role in lacunar stroke and brain hemorrhages and is a leading cause of cognitive decline and functional loss in elderly patients. Based on underlying pathophysiology, cSVD can be subdivided into amyloidal and non-amyloidal subtypes. Genetic factors of cSVD play a pivotal role in terms of unraveling molecular mechanism. An important pathophysiological mechanism of cSVD is blood-brain barrier leakage and endothelium dysfunction which gives a clue in identification of the disease through circulating biological markers. Detection of cSVD is routinely carried out by key neuroimaging markers including white matter hyperintensities, lacunes, small subcortical infarcts, perivascular spaces, cerebral microbleeds, and brain atrophy. Application of neural networking, machine learning and deep learning in image processing have increased significantly for correct severity of cSVD. A linkage between cSVD and other neurological disorder, such as Alzheimer's and Parkinson's disease and non-cerebral disease, has also been investigated recently. This review draws a broad picture of cSVD, aiming to inculcate new insights into its pathogenesis and biomarkers. It also focuses on the role of deep machine strategies and other dimensions of cSVD by linking it with several cerebral and non-cerebral diseases as well as recent advances in the field to achieve sensitive detection, effective prevention and disease management.
Collapse
Affiliation(s)
- Elisa Cuadrado-Godia
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Sanjiv Sharma
- Department of Computer Science & Engineering and Information Technology, Madhav Institute of Technology and Science, Gwalior, India
| | - Angel Ois Santiago
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jaume Roquer Gonzalez
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, IQS School of Engineering, Barcelona, Spain
| | - John Laird
- Department of Cardiology, St. Helena Hospital, St. Helena, CA, USA
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | | | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | | | - Jasjit S Suri
- Stroke Monitoring Division, AtheroPoint, Roseville, CA, USA
| |
Collapse
|
25
|
Impaired Cerebral Vasomotor Reactivity in Alzheimer's Disease. Int J Alzheimers Dis 2018; 2018:9328293. [PMID: 30271632 PMCID: PMC6151226 DOI: 10.1155/2018/9328293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/30/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Background Recent studies have shown that cerebral vascularity may be impaired in Alzheimer's disease. Cerebral vasomotor reactivity could be an important biomarker for this pathology. Aims The aim of this study was to investigate the alterations in cerebral vascular motor reactivity in Alzheimer's disease subjects and to associate these changes with their cognitive scores. Methods We recruited subjects with a diagnosis of Alzheimer's disease and healthy controls. Demographic, clinical, imaging, and cognitive test were obtained. Then all participants performed a cerebral vascular motor reactivity test with 7% CO2 and cerebral blood flow velocities (CBFV) were recorded with transcranial doppler ultrasound before and after the test. Results We recruited 45 subjects, 26 (21 female) Alzheimer's disease participants and 19 (15 female) healthy controls. There were no differences in baseline cerebral blood flow velocities between the groups. After the cerebral vasomotor reactivity test, absolute mean difference in mean CBFV (ΔCBFV-m) was 8.70±4.14 versus 4.81±6.96 (p<0.01), respectively. Calculated percentage of change (%CVMR) was lower in the AD group 7.45±18.25 versus 23.29±17.48, and there was a positive but weak correlation with mini-mental scores (ρ=0.337, p=0.023). Conclusions In this study, Alzheimer's disease subjects showed significant changes in all absolute cerebral blood flow velocities after the cerebral vasomotor reactivity test with CO2, but only diastolic phase responses were statistically significant. There was a positive but weak correlation between cerebral vasomotor reactivity and cognitive scores. Further studies are needed to investigate these effects in larger Latin-American samples.
Collapse
|
26
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Thrippleton MJ, Shi Y, Blair G, Hamilton I, Waiter G, Schwarzbauer C, Pernet C, Andrews PJD, Marshall I, Doubal F, Wardlaw JM. Cerebrovascular reactivity measurement in cerebral small vessel disease: Rationale and reproducibility of a protocol for MRI acquisition and image processing. Int J Stroke 2017; 13:195-206. [DOI: 10.1177/1747493017730740] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Impaired autoregulation may contribute to the pathogenesis of cerebral small vessel disease. Reliable protocols for measuring microvascular reactivity are required to test this hypothesis and for providing secondary endpoints in clinical trials. Aims To develop and assess a protocol for acquisition and processing of cerebrovascular reactivity by MRI, in subcortical tissue of patients with small vessel disease and minor stroke. Methods We recruited 15 healthy volunteers, testing paradigms using 1- and 3-min 6% CO2 challenges with repeat scanning, and 15 patients with history of minor stroke. We developed a protocol to measure cerebrovascular reactivity and delay times, assessing tolerability and reproducibility in grey and white matter areas. Results The 3-min paradigm yielded more reproducible data than the 1-min paradigm (CV respectively: 7.9–15.4% and 11.7–70.2% for cerebrovascular reactivity in grey matter), and was less reproducible in white matter (16.1–24.4% and 27.5–141.0%). Tolerability was similar for the two paradigms, but mean cerebrovascular reactivity and cerebrovascular reactivity delay were significantly higher for the 3-min paradigm in most regions. Patient tolerability was high with no evidence of greater failure rate (1/15 patients vs. 2/15 volunteers withdrew at the first visit). Grey matter cerebrovascular reactivity was lower in patients than in volunteers (0.110–0.234 vs. 0.172–0.313%/mmHg; p < 0.05 in 6/8 regions), as was the white matter cerebrovascular reactivity delay (16.2–43.9 vs. 31.1–47.9 s; p < 0.05 in 4/8 regions). Conclusions An effective and well-tolerated protocol for measurement of cerebrovascular reactivity was developed for use in ongoing and future trials to investigate small vessel disease pathophysiology and to measure treatment effects.
Collapse
Affiliation(s)
- Michael J Thrippleton
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Yulu Shi
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gordon Blair
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Iona Hamilton
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gordon Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Christian Schwarzbauer
- Faculty of Applied Sciences & Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Cyril Pernet
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter JD Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus Doubal
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh
| |
Collapse
|
28
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases. Aging Dis 2017; 8:486-505. [PMID: 28840062 PMCID: PMC5524810 DOI: 10.14336/ad.2017.0507] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/07/2017] [Indexed: 01/13/2023] Open
Abstract
As with many age-related diseases including vascular dysfunction, age is considered an independent and crucial risk factor. Complicated alterations of structure and function in the vasculature are linked with aging hence, understanding the underlying mechanisms of age-induced vascular pathophysiological changes holds possibilities for developing clinical diagnostic methods and new therapeutic strategies. Here, we discuss the underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 (MCP-1) and TGFβ-1 as well as the potential roles of testosterone and estrogen. We then relate all of these to clinical manifestations such as vascular dementia and stroke in addition to reviewing the existing clinical measurements and potential interventions for age-related vascular dysfunction.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
29
|
Pulsatile and steady components of blood pressure and subclinical cerebrovascular disease: the Northern Manhattan Study. J Hypertens 2016; 33:2115-22. [PMID: 26259124 DOI: 10.1097/hjh.0000000000000686] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess whether pulse pressure (PP) is associated, independently of mean arterial pressure (MAP), with perivascular spaces (PVS), lacunar lesions presumably ischemic (LPI), and white matter hyperintensity volume (WMHV) seen on brain MRI. METHODS Participants in the Northern Manhattan Study had their blood pressure (BP) taken during their baseline enrollment visit and again during a visit for a brain MRI a mean of 7 years later. We assessed small and large PVS, lacunar LPI, and WMHV on MRI. We examined the association of SBP, DBP, MAP, and PP at baseline with subclinical markers of cerebrovascular disease using generalized linear models and adjusting for vascular risk factors. RESULTS Imaging and BP data were available for 1009 participants (mean age 68 ± 8 years, 60% women, 60% Hispanic). DBP was associated with lacunar LPI and WMHV, whereas SBP was associated with small and large PVS. Using MAP and PP together disclosed that the effect size for PP was greater for large PVS, whereas the effect of MAP was greater for lacunar LPI and WMHV. The effects of DBP were flat or negative at any degree of SBP higher than 120 mmHg for small and large PVS, whereas a positive association was noted for lacunar LPI and WMHV with any DBP increase over any degree of SBP. CONCLUSION We report here a segregated association between the pulsatile and steady components of the BP with subclinical markers of cerebrovascular disease. These differential associations may reflect the underlying disease of these biomarkers.
Collapse
|
30
|
Chow FC, Boscardin WJ, Mills C, Ko N, Carroll C, Price RW, Deeks S, Sorond FA, Hsue PY. Cerebral vasoreactivity is impaired in treated, virally suppressed HIV-infected individuals. AIDS 2016; 30:45-55. [PMID: 26372478 DOI: 10.1097/qad.0000000000000875] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To compare cerebral vasoreactivity, a measure of cerebrovascular endothelial function, between treated, virally suppressed HIV-infected individuals and HIV-uninfected controls and to evaluate the effect of HIV-specific factors on cerebral vasoreactivity. METHODS Cross-sectional study of 65 antiretroviral therapy-treated, virally suppressed HIV-infected individuals and 28 HIV-uninfected controls. Participants underwent noninvasive assessment of cerebral vasoreactivity using transcranial Doppler ultrasound and inhaled carbon dioxide (CO2). We used mixed effects multivariable linear regression to determine the association of HIV infection and HIV-specific factors with cerebral vasoreactivity. RESULTS Mean age was 57.2 years for HIV-infected participants and 53.5 years for HIV-uninfected controls. Most participants (95%) were men. Twenty-six per cent of HIV-infected participants were nonwhite compared to 32% of controls. Among HIV-infected participants, mean CD4 cell count was 596 cells/μl, and mean duration of viral suppression was 7.8 years. Cerebral vasoreactivity in response to hypercapnia (cerebral VRhyper) was lower in HIV-infected individuals compared to uninfected controls (3.23 versus 3.81%, P = 0.010). After adjusting for demographic and vascular risk factors, HIV infection was independently associated with lower cerebral vasoreactivity (-0.86%, 95% CI -1.30 to -0.42%, P < 0.001). We did not find a statistically significant effect of recent or nadir CD4 cell count on cerebral vasoreactivity. There was a trend toward higher cerebral vasoreactivity for each additional year of viral suppression. CONCLUSION Treated, virally suppressed HIV infection negatively impacted cerebral vasoreactivity even after adjustment for traditional vascular risk factors. These data highlight the potential contribution of cerebrovascular endothelial dysfunction to the elevated risk of stroke observed in HIV-infected individuals.
Collapse
|
31
|
Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. J Cereb Blood Flow Metab 2016; 36:72-94. [PMID: 26058695 PMCID: PMC4758546 DOI: 10.1038/jcbfm.2015.116] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Abstract
The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes, and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes.
Collapse
Affiliation(s)
- Anna Poggesi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Marco Pasi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Francesca Pescini
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Leonardo Pantoni
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Domenico Inzitari
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
- Institute of Neuroscience, Italian National Research Council, Florence, Italy
| |
Collapse
|
32
|
Zupan M, Šabović M, Zaletel M, Popovič KŠ, Žvan B. The presence of cerebral and/or systemic endothelial dysfunction in patients with leukoaraiosis--a case control pilot study. BMC Neurol 2015; 15:158. [PMID: 26329797 PMCID: PMC4557861 DOI: 10.1186/s12883-015-0416-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In spite of high prevalence and clinical relevance of leukoaraiosis (LA), its pathophysiology is still incompletely understood. Theories of ischaemic genesis and a leaky blood-brain barrier are contradictory yet could share a common denominator-endothelial dysfunction (cerebral, systemic or both), which has not been studied thoroughly in LA. METHODS Thirty patients with LA (58 years (SD 7)) and 30 gender- and age-matched controls without LA (55 years (SD 6)) were recruited. The vascular risk factors (VRF) were identical in both groups. Cerebral endothelial function was determined by cerebrovascular reactivity to L-arginine (CVR). Systemic endothelial function was determined by flow-mediated dilatation (FMD) of the brachial artery after hyperaemia. All participants underwent a brain MRI to search for radiological signs of LA that was classified according to the Fazekas score. Linear regression was used to explore the correlation between CVR and FMD in patients with LA. A 95 % confidence interval was used. For any statistical test used in the study, p ≤ 0.050 was regarded as statistically significant. RESULTS We found a marked and significant decrease in both CVR (9.6 % (SD 3.2) vs. 15.8 % (SD 6.1), p < 0.001) and FMD (4.8 % (SD 3.1) vs. 7.4 % (SD 3.8), p = 0.004) in LA patients compared to controls. Both CVR (7.4 % (SD 3.1) vs. 12.2 % (SD 2.6), p = 0.001) and FMD (3.0 % (SD 2.2) vs. 6.4 % (SD 3.1), p = 0.011) were significantly decreased in LA subgroup Fazekas 3 compared to subgroup Fazekas 1. CVR and FMD significantly positively correlated (b = 0.192, 95 % CI = 0.031-0.354, p = 0.02). CONCLUSIONS The results of our pilot study suggest that patients with LA have a significant impairment of both cerebral and systemic endothelial function that is larger than could be expected based on present VRF. Endothelial dysfunction increases in parallel with LA severity and correlates between cerebral and systemic arterial territory. Overall, our results suggest a so far unknown "intrinsic" generalised endothelial dysfunction in patients with LA that could be involved in LA pathophysiology. This interesting issue needs to be confirmed in larger samples since it could help better understand the mechanisms underlying LA.
Collapse
Affiliation(s)
- Matija Zupan
- Division of Vascular Neurology, Department of Neurology, University Medical Centre Ljubljana, 2 Zaloška Street, 1000, Ljubljana, Slovenia.
| | - Mišo Šabović
- Division of Vascular Diseases, Department of Internal Medicine, University Medical Centre Ljubljana, 2 Zaloška Street, 1000, Ljubljana, Slovenia.
| | - Marjan Zaletel
- Division of Vascular Neurology, Department of Neurology, University Medical Centre Ljubljana, 2 Zaloška Street, 1000, Ljubljana, Slovenia.
| | - Katarina Šurlan Popovič
- Clinical Institute of Radiology, University Medical Centre Ljubljana, 2 Zaloška Street, 1000, Ljubljana, Slovenia.
| | - Bojana Žvan
- Division of Vascular Neurology, Department of Neurology, University Medical Centre Ljubljana, 2 Zaloška Street, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Gutierrez J, Goldman J, Dwork AJ, Elkind MSV, Marshall RS, Morgello S. Brain arterial remodeling contribution to nonembolic brain infarcts in patients with HIV. Neurology 2015; 85:1139-45. [PMID: 26320196 DOI: 10.1212/wnl.0000000000001976] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/05/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a cause of morbidity in HIV-infected populations. The relationship among HIV infection, brain arterial remodeling, and stroke is unclear. METHODS Large brain arteries (n = 1,878 segments) from 284 brain donors with and without HIV were analyzed to obtain media and wall thickness and lumen-to-wall ratio, and to determine the presence of atherosclerosis and dolichoectasia (arterial remodeling extremes). Neuropathologic assessment was used to characterize brain infarcts. Multilevel models were used to assess for associations between arterial characteristics and HIV. Associations between arterial characteristics and brain infarcts were examined in HIV+ individuals only. RESULTS Adjusting for vascular risk factors, HIV infection was associated with thicker arterial walls and smaller lumen-to-wall ratios. Cerebral atherosclerosis accounted for one-quarter of the brain infarcts in HIV+ cases, and was more common with aging, diabetes, a lower CD4 nadir, and a higher antemortem CD4 count. In contrast, a higher lumen-to-wall ratio was the only arterial predictor of unexplained infarcts in HIV+ cases. Dolichoectasia was more common in HIV+ cases with smoking and media thinning, and with protracted HIV infection and a detectable antemortem viral load. CONCLUSIONS HIV infection may predispose to inward remodeling compared to uninfected controls. However, among HIV+ cases with protracted immunosuppression, outward remodeling is the defining arterial phenotype. Half of all brain infarcts in this sample were attributed to the extremes of brain arterial remodeling: atherosclerosis and dolichoectasia. Understanding the mechanisms influencing arterial remodeling will be important in controlling cerebrovascular disease in the HIV-infected population.
Collapse
Affiliation(s)
- Jose Gutierrez
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - James Goldman
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | - Andrew J Dwork
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | - Mitchell S V Elkind
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | - Randolph S Marshall
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | - Susan Morgello
- From the Departments of Neurology (J.G., M.S.V.E., R.S.M.), Pathology and Cell Biology (J.G., A.J.D.), Psychiatry (A.J.D.), and Epidemiology (M.S.V.E.), Columbia University Medical Center; and the Departments of Neurology, Neuroscience, and Pathology (S.M.), Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| |
Collapse
|
34
|
Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol 2015; 25:44-50. [PMID: 25521176 DOI: 10.1111/bpa.12224] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Brain endothelial cells have unique properties in terms of barrier function, local molecular signaling, regulation of local cerebral blood flow (CBF) and interactions with other members of the neurovascular unit. In cerebral small vessel disease (arteriolosclerosis; SVD), the endothelial cells in small arteries survive, even when mural pathology is advanced and myocytes are severely depleted. Here, we review aspects of altered endothelial functions that have been implicated in SVD: local CBF dysregulation, endothelial activation and blood-brain barrier (BBB) dysfunction. Reduced CBF is reported in the diffuse white matter lesions that are a neuroradiological signature of SVD. This may reflect an underlying deficit in local CBF regulation (possibly via the nitric oxide/cGMP signaling pathway). While many laboratories have observed an association of symptomatic SVD with serum markers of endothelial activation, it is apparent that the origin of these circulating markers need not be brain endothelium. Our own neuropathology studies did not confirm local endothelial activation in small vessels exhibiting SVD. Local BBB failure has been proposed as a cause of SVD and associated parenchymal lesions. Some groups find that computational analyses of magnetic resonance imaging (MRI) scans, following systemic injection of a gadolinium-based contrast agent, suggest that extravasation into brain parenchyma is heightened in people with SVD. Our recent histochemical studies of donated brain tissue, using immunolabeling for large plasma proteins [fibrinogen, immunoglobulin G (IgG)], do not support an association of SVD with recent plasma protein extravasation. It is possible that a trigger leakage episode, or a size-selective loosening of the BBB, participates in SVD pathology.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular and Cellular Biology Research Centre, St Georges University of London, London, UK; Stroke and Dementia Research Centre, St Georges University of London, London, UK
| | | | | |
Collapse
|
35
|
Abstract
Stroke is the leading cause of disability in the USA and a major cause of mortality worldwide. One out of four strokes is recurrent. Secondary stroke prevention starts with deciphering the most likely stroke mechanism. In general, one of the main goals in stroke reduction is to control vascular risk factors such as hypertension, diabetes, dyslipidemia, and smoking cessation. Changes in lifestyle like a healthy diet and aerobic exercise are also recommended strategies. In the case of cardioembolism due to atrial fibrillation, mechanical valves, or cardiac thrombus, anticoagulation is the mainstay of therapy. The role of anticoagulation is less evident in the case of bioprosthetic valves, patent foramen ovale, and dilated cardiomyopathy with low ejection fraction. Strokes due to larger artery atherosclerosis account for approximately a third of all strokes. In the case of symptomatic extracranial carotid stenosis, surgical intervention as close as possible in time to the index event seems highly beneficial. In the case of intracranial large artery atherosclerosis, the best medical therapy consists of antiplatelets, high-dose statins, aggressive controls of vascular risk factors, and lifestyle modifications, with no role for intracranial arterial stenting or angioplasty. For patients with small artery occlusion (ie, lacunar stroke), the therapy is similar to that used in patients with intracranial large artery atherosclerosis. Despite the constant new evidence on how to best treat patients who have suffered a stroke, the risk of stroke recurrence remains unacceptably high, thus evidencing the need for novel therapies.
Collapse
Affiliation(s)
- Charles Esenwa
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Elphick A, Shovlin CL. Relationships between epistaxis, migraines, and triggers in hereditary hemorrhagic telangiectasia. Laryngoscope 2014; 124:1521-8. [DOI: 10.1002/lary.24526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/13/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Amy Elphick
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust; London United Kingdom
- Cardiovascular Sciences; National Heart and Lung Institute, Imperial College London; London United Kingdom
- School of Life Sciences; Imperial College London; London United Kingdom
| | - Claire L. Shovlin
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust; London United Kingdom
- Cardiovascular Sciences; National Heart and Lung Institute, Imperial College London; London United Kingdom
| |
Collapse
|
37
|
Lavallée PC, Labreuche J, Faille D, Huisse MG, Nicaise-Roland P, Dehoux M, Gongora-Rivera F, Jaramillo A, Brenner D, Deplanque D, Klein IF, Touboul PJ, Vicaut E, Ajzenberg N. Circulating Markers of Endothelial Dysfunction and Platelet Activation in Patients with Severe Symptomatic Cerebral Small Vessel Disease. Cerebrovasc Dis 2013; 36:131-8. [DOI: 10.1159/000353671] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
|