1
|
Pellicci DG, Tavakolinia N, Perriman L, Berzins SP, Menne C. Thymic development of human natural killer T cells: recent advances and implications for immunotherapy. Front Immunol 2024; 15:1441634. [PMID: 39267746 PMCID: PMC11390520 DOI: 10.3389/fimmu.2024.1441634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Louis Perriman
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Fiona Elsey Cancer Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | | |
Collapse
|
2
|
Ishikawa H, Nagashima R, Kuno Y, Sasaki H, Kohda C, Iyoda M. Effects of NKT Cells on Metabolic Disorders Caused by High-Fat Diet Using CD1d-Knockout Mice. Diabetes Metab Syndr Obes 2023; 16:2855-2864. [PMID: 37744699 PMCID: PMC10517681 DOI: 10.2147/dmso.s428190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose The purpose of this study was to investigate whether NKT cells play an important role in preventing or exacerbating diseases caused by high-fat diet (HFD) using CD1d-knockout (KO) mice which lack NKT cells. Methods Five-week-old male Balb/c (wild-type; WT) or CD1dKO mice were fed with control-diet (CTD) or HFD for 16 weeks. Results The present study revealed four main findings. First, CD1dKO mice were susceptible to obesity caused by HFD in comparison to WT mice. Second, clinical conditions of fatty liver caused by HFD were comparable between CD1dKO mice and WT mice. Third, HFD-fed WT mice showed high levels of serum biochemical markers, involved in lipid metabolisms, in comparison to WT mice fed a CTD. Notably, the serum concentrations of ALT, T-CHO, TG and HDL-C in CD1dKO mice fed a HFD were almost comparable to those of CD1dKO mice fed a CTD. Fourth, the expression of peroxisome proliferator-activated receptor (PPAR) γ, low-density lipoprotein receptor (LDLR), CD36 of epididymal adipose tissue enhanced and proprotein convertase subtilisin/kexin type (PCSK) 9 in serum decreased. Conclusion NKT cells were responsible for protection against HFD-induced obesity. However, CD1dKO mice were resistant to serum biochemical marker abnormalities after HFD feeding. One possible explanation is that the epididymal adipose tissue of CD1dKO mice could take up greater amounts of excess lipids in serum in comparison to WT mice.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| |
Collapse
|
3
|
Hein R, Sake HJ, Pokoyski C, Hundrieser J, Brinkmann A, Baars W, Nowak-Imialek M, Lucas-Hahn A, Figueiredo C, Schuberth HJ, Niemann H, Petersen B, Schwinzer R. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class I low phenotype-Effects on immune status and susceptibility to human immune responses. Am J Transplant 2020; 20:988-998. [PMID: 31733031 DOI: 10.1111/ajt.15710] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have previously shown that SLA class I deficiency can be achieved in pigs by CRISPR/Cas9-mediated deletion of β2 -microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I was functionally inert, because no proper differentiation of the CD8+ T cell subset was observed in B2Mlow pigs. Cells from B2Mlow pigs were less capable in triggering proliferation of human peripheral blood mononuclear cells in vitro, which was mainly due to the nonresponsiveness of CD8+ T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg, CD4+ T cells, natural killer cells) lysed targets from both SLA class I+ wildtype and SLA class Ilow pigs with similar efficiency. These data indicate that the absence of SLA class I is an effective approach to prevent the activation of human CD8+ T cells during the induction phase of an anti-xenograft response. However, cytotoxic activity of cells during the effector phase cannot be controlled by this approach.
Collapse
Affiliation(s)
- Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Hendrik J Sake
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Monika Nowak-Imialek
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | | | | | - Heiner Niemann
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Nair S, Dhodapkar MV. Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1178. [PMID: 29018445 PMCID: PMC5614937 DOI: 10.3389/fimmu.2017.01178] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy.
Collapse
Affiliation(s)
- Shiny Nair
- Yale University, New Haven, CT, United States
| | | |
Collapse
|
6
|
Constant B cell lymphocytosis since early age in a patient with CARD11 mutation: A 20-year follow-up. Clin Immunol 2016; 165:19-20. [PMID: 26861442 DOI: 10.1016/j.clim.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
|
7
|
Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci 2015; 60:1528-42. [PMID: 25487192 DOI: 10.1007/s10620-014-3473-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Autoimmune hepatitis is associated with interactive cell populations of the innate and adaptive immune systems, and these populations are amenable to therapeutic manipulation. The goals of this review are to describe the key cell populations implicated in autoimmune hepatitis and to identify investigational opportunities to develop cell-directed therapies for this disease. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, innate and adaptive immune systems, and therapeutic interventions were examined. Dendritic cells can promote immune tolerance to self-antigens, present neo-antigens that enhance the immune response, and expand the regulatory T cell population. Natural killer cells can secrete pro-inflammatory and anti-inflammatory cytokines and modulate the activity of dendritic cells and antigen-specific T lymphocytes. T helper 2 lymphocytes can inhibit the cytotoxic activities of T helper 1 lymphocytes and limit the expansion of T helper 17 lymphocytes. T helper 17 lymphocytes can promote inflammatory activity, and they can also up-regulate genes that protect against oxidative stress and hepatocyte apoptosis. Natural killer T cells can expand the regulatory T cell population; gamma delta lymphocytes can secrete interleukin-10, stimulate hepatic regeneration, and induce the apoptosis of hepatic stellate cells; and antigen-specific regulatory T cells can dampen immune cell proliferation and function. Pharmacological agents, neutralizing antibodies, and especially the adoptive transfer of antigen-specific regulatory T cells that have been freshly generated ex vivo are evolving as management strategies. The cells within the innate and adaptive immune systems are key contributors to the occurrence of autoimmune hepatitis, and they are attractive therapeutic targets.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | | |
Collapse
|
8
|
Ardeniz Ö, Unger S, Onay H, Ammann S, Keck C, Cianga C, Gerçeker B, Martin B, Fuchs I, Salzer U, İkincioğulları A, Güloğlu D, Dereli T, Thimme R, Ehl S, Schwarz K, Schmitt-Graeff A, Cianga P, Fisch P, Warnatz K. β2-Microglobulin deficiency causes a complex immunodeficiency of the innate and adaptive immune system. J Allergy Clin Immunol 2015; 136:392-401. [PMID: 25702838 DOI: 10.1016/j.jaci.2014.12.1937] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Most patients with MHC class I (MHC-I) deficiency carry genetic defects in transporter associated with antigen processing 1 (TAP1) or TAP2. The clinical presentation can vary, and about half of the patients have severe skin disease. Previously, one report described β2-microglobulin (β2m) deficiency as another monogenetic cause of MHC-I deficiency, but no further immunologic evaluation was performed. OBJECTIVE We sought to describe the molecular and immunologic features of β2m deficiency in 2 Turkish siblings with new diagnoses. METHODS Based on clinical and serologic findings, the genetic defect was detected by means of candidate gene analysis. The immunologic characterization comprises flow cytometry, ELISA, functional assays, and immunohistochemistry. RESULTS Here we provide the first extensive clinical and immunologic description of β2m deficiency in 2 siblings. The sister had recurrent respiratory tract infections and severe skin disease, whereas the brother was fairly asymptomatic but had bronchiectasis. Not only polymorphic MHC-I but also the related CD1a, CD1b, CD1c, and neonatal Fc receptor molecules were absent from the surfaces of β2m-deficient cells. Absent neonatal Fc receptor surface expression led to low serum IgG and albumin levels in both siblings, whereas the heterozygous parents had normal results for all tested parameters except β2m mRNA (B2M) expression. Similar to TAP deficiency in the absence of a regular CD8 T-cell compartment, CD8(+) γδ T cells were strongly expanded. Natural killer cells were normal in number but not "licensed to kill." CONCLUSION The clinical presentation of patients with β2m deficiency resembles that of patients with other forms of MHC-I deficiency, but because of the missing stabilizing effect of β2m on other members of the MHC-I family, the immunologic defect is more extensive than in patients with TAP deficiency.
Collapse
Affiliation(s)
- Ömür Ardeniz
- Internal Medicine Division of Allergy and Clinical Immunology, Ege University Medical Faculty, İzmir, Turkey.
| | - Susanne Unger
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Hüseyin Onay
- Department of Medical Genetics, Ege University Medical Faculty, İzmir, Turkey
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Caroline Keck
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Corina Cianga
- Grigore T. Popa University of Medicine and Pharmacy, Department of Immunology, Iasi, Romania
| | - Bengü Gerçeker
- Department of Dermatology, Ege University Medical Faculty, İzmir, Turkey
| | - Bianca Martin
- Department of Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Aydan İkincioğulları
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Deniz Güloğlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Tuğrul Dereli
- Department of Dermatology, Ege University Medical Faculty, İzmir, Turkey
| | - Robert Thimme
- Department of Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, and the Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Ulm, Germany
| | | | - Petru Cianga
- Grigore T. Popa University of Medicine and Pharmacy, Department of Immunology, Iasi, Romania
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther 2014; 40:261-79. [PMID: 24890045 DOI: 10.1111/apt.12825] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/10/2014] [Accepted: 05/14/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chemokines contribute to the pathogenesis of autoimmune hepatitis by directing the migration and positioning of inflammatory and immune cells within the liver. AIM Describe the liver-infiltrating effector cell populations in autoimmune hepatitis, indicate the chemokines that influence their migration, describe the role of chemokines in hepatic fibrosis and identify chemokine-directed treatment opportunities. METHODS Studies cited in Pub Med from 1972 to 2014 for autoimmune hepatitis, chemokines in liver disease, pathogenesis of autoimmune hepatitis and chemokine therapy were selected. RESULTS T helper type 17 lymphocytes expressing CXCR3 and CCR6 are attracted to the liver by the secretion of CXCL9, CXCL10 and CXCL11. These cells recruit pro-inflammatory T helper type 1 lymphocytes expressing CXCR3 and CCR5 by secreting CXCL10. Resident natural killer T cells expressing CXCR6 migrate in response to the local secretion of CXCL16, and they modulate the inflammatory response. T helper type 2 lymphocytes expressing CCR4 are attracted by CCL17 and CCL22, and they dampen the expansion of pro-inflammatory cells. Regulatory T cells expressing CXCR3 are attracted by the secretion of CXCL9, and they help dampen the pro-inflammatory responses. CCL2, CCL3, CCL5, CXCL4, CXCL10 and CXCL16 promote fibrosis by activating or attracting hepatic stellate cells, and CX3CL1 may prevent fibrosis by affecting the apoptosis of monocytes. CONCLUSIONS Chemokines are requisites for mobilising, directing and positioning the effector cells in immune-mediated liver disease. They are feasible therapeutic targets in autoimmune hepatitis, and the evaluation of monoclonal antibodies that neutralise the pro-inflammatory ligands or designer peptides that block receptor activity are investigational opportunities.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
10
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
11
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
12
|
Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 2012; 121:614-23. [PMID: 23223428 DOI: 10.1182/blood-2012-09-456095] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Invariant natural killer (iNKT) T cells and mucosal-associated invariant T (MAIT) cells represent peculiar T-lymphocyte subpopulations with innate-like properties that differ from conventional T cells. iNKT are reduced in the primary immunodeficiency caused by mutations in the X-linked inhibitor of apoptosis (XIAP). By studying the mechanism of this depletion, we herein report that iNKT cells exhibit a high susceptibility to apoptosis that is not observed with conventional T cells. Elevated expression of caspases 3 and 7 accounts for the proapoptotic phenotype of iNKT cells, which is inhibited by XIAP although it exerts a moderate effect in conventional T cells. Similarly, MAIT cells exhibit a proapoptotic propensity with elevated expression of activated caspases and are decreased in XIAP-deficient individuals. Knockdown of the transcription factor PLZF/ZBTB-16, which is involved in the effector program of iNKT cells, diminishes their proapoptotic phenotype. Conversely, overexpression of PLZF/ZBTB-16 in conventional T cells leads to a proapoptotic phenotype. Our findings identify a previously unknown pathway of regulation of innate-like T-cell homeostasis depending on XIAP and PLZF. The proapoptotic feature of iNKT cells also gives a reliable explanation of their exhaustion observed in different human conditions including the XIAP immunodeficiency.
Collapse
|