1
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Challenges in Cell Fate Acquisition to Scid-Repopulating Activity from Hemogenic Endothelium of hiPSCs Derived from AML Patients Using Forced Transcription Factor Expression. Cells 2022; 11:cells11121915. [PMID: 35741044 PMCID: PMC9221973 DOI: 10.3390/cells11121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of human hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) represents a major goal in regenerative medicine and is believed would follow principles of early development. HSCs arise from a type of endothelial cell called a “hemogenic endothelium” (HE), and human HSCs are experimentally detected by transplantation into SCID or other immune-deficient mouse recipients, termed SCID-Repopulating Cells (SRC). Recently, SRCs were detected by forced expression of seven transcription factors (TF) (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) in hPSC-derived HE, suggesting these factors are deficient in hPSC differentiation to HEs required to generate HSCs. Here we derived PECAM-1-, Flk-1-, and VE-cadherin-positive endothelial cells that also lack CD45 expression (PFVCD45−) which are solely responsible for hematopoietic output from iPSC lines reprogrammed from AML patients. Using HEs derived from AML patient iPSCs devoid of somatic leukemic aberrations, we sought to generate putative SRCs by the forced expression of 7TFs to model autologous HSC transplantation. The expression of 7TFs in hPSC-derived HE cells from an enhanced hematopoietic progenitor capacity was present in vitro, but failed to acquire SRC activity in vivo. Our findings emphasize the benefits of forced TF expression, along with the continued challenges in developing HSCs for autologous-based therapies from hPSC sources.
Collapse
|
3
|
Wang J, Farkas C, Benyoucef A, Carmichael C, Haigh K, Wong N, Huylebroeck D, Stemmler MP, Brabletz S, Brabletz T, Nefzger CM, Goossens S, Berx G, Polo JM, Haigh JJ. Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity. PLoS Biol 2021; 19:e3001394. [PMID: 34550965 PMCID: PMC8489726 DOI: 10.1371/journal.pbio.3001394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 10/04/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus–based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML. This study shows that the closely related transcription factors ZEB1 and ZEB2 cooperate to restrain myeloid and lymphoid differentiation programs in hematopoietic stem and progenitor cells, ensuring fidelity of differentiation in multiple lineages.
Collapse
Affiliation(s)
- Jueqiong Wang
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Carlos Farkas
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | | | - Katharina Haigh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Nick Wong
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marc P. Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian M. Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University and University Hospital, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jose M. Polo
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Australia
| | - Jody J. Haigh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
4
|
Garcia de Vinuesa A, Sanchez-Duffhues G, Blaney-Davidson E, van Caam A, Lodder K, Ramos Y, Kloppenburg M, Meulenbelt I, van der Kraan P, Goumans MJ, Ten Dijke P. Cripto favors chondrocyte hypertrophy via TGF-β SMAD1/5 signaling during development of osteoarthritis. J Pathol 2021; 255:330-342. [PMID: 34357595 PMCID: PMC9292799 DOI: 10.1002/path.5774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)‐β, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor‐like kinase (ALK)1 against canonical TGF‐β receptor ALK5‐mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF‐β signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF‐β co‐receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF‐β–ALK1–Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amaya Garcia de Vinuesa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Esmeralda Blaney-Davidson
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Arjan van Caam
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Yolande Ramos
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| |
Collapse
|
5
|
Persaud AK, Nair S, Rahman MF, Raj R, Weadick B, Nayak D, McElroy C, Shanmugam M, Knoblaugh S, Cheng X, Govindarajan R. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun 2021; 12:1248. [PMID: 33623001 PMCID: PMC7902824 DOI: 10.1038/s41467-021-21451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Mutations in human equilibrative nucleoside transporter 3 (ENT3) encoded by SLC29A3 results in anemia and erythroid hypoplasia, suggesting that ENT3 may regulate erythropoiesis. Here, we demonstrate that lysosomal ENT3 transport of taurine-conjugated bile acids (TBA) facilitates TBA chemical chaperone function and alleviates endoplasmic reticulum (ER) stress in expanding mouse hematopoietic stem and progenitor cells (HSPCs). Slc29a3−/− HSPCs accumulate less TBA despite elevated levels of TBA in Slc29a3−/− mouse plasma and have elevated basal ER stress, reactive oxygen species (ROS), and radiation-induced apoptosis. Reintroduction of ENT3 allows for increased accumulation of TBA into HSPCs, which results in TBA-mediated alleviation of ER stress and erythroid apoptosis. Transplanting TBA-preconditioned HSPCs expressing ENT3 into Slc29a3−/− mice increase bone marrow repopulation capacity and erythroid pool size and prevent early mortalities. Together, these findings suggest a putative role for a facilitative lysosomal transporter in the bile acid regulation of ER stress in mouse HSPCs which may have implications in erythroid biology, the treatment of anemia observed in ENT3-mutated human genetic disorders, and nucleoside analog drug therapy. Mutations in ENT3, encoded by SLC29A3, result in anaemia and erythroid hypoplasia, suggesting roles in erythropoiesis. Here the authors show that ENT3 acts as a lysosomal bile acid transporter, and mutation compromises taurine conjugated bile acid transport in erythroid progenitors leading to ER stress, and anaemia.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sreenath Nair
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Md Fazlur Rahman
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Craig McElroy
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Muruganandan Shanmugam
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sue Knoblaugh
- Depatment of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA. .,Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Ninkovic S, Harrison SJ, Quach H. Glucose-regulated protein 78 (GRP78) as a potential novel biomarker and therapeutic target in multiple myeloma. Expert Rev Hematol 2020; 13:1201-1210. [PMID: 32990063 DOI: 10.1080/17474086.2020.1830372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glucose-regulated protein 78 (GRP78) is a stress-inducible molecular chaperone expressed within the endoplasmic reticulum where it acts as a master regulator of the unfolded protein response (UPR) pathway. At times of ER stress, activation of the UPR, a multimolecular pathway, limits proteotoxicity induced by misfolded proteins. In malignancies, including multiple myeloma which is characterized by an accumulation of misfolded immunoglobulins, GRP78 expression is increased, with notable translocation of GRP78 to the cell surface. Studies suggest cell-surface GRP78 (csGRP78) to be of prognostic significance with emerging evidence that it interacts with a myriad of co-ligands to activate signaling pathways promoting cell proliferation and survival or apoptosis. AREAS COVERED This review focuses on the role of ER and csGRP78 in physiology and oncogenesis in multiple myeloma, addressing factors that shift the balance in GRP78 signaling from survival to apoptosis. The role of GRP78 as a potential prognostic biomarker is explored and current therapeutics in development aimed at targeting csGRP78 are addressed. We conducted a PubMed literature search using the keywords 'GRP78,' 'multiple myeloma' reviewing studies prior to 2020. EXPERT OPINION Cell-surface GRP78 expression is a potential novel prognostic biomarker in myeloma and targeting of csGRP78 is promising and requires further investigation.
Collapse
Affiliation(s)
- Slavisa Ninkovic
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital , Melbourne, Australia.,Sir Peter MacCallum Dept of Oncology, University of Melbourne , Parkville, Australia
| | - Hang Quach
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| |
Collapse
|
7
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
8
|
Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8781690. [PMID: 31531187 PMCID: PMC6721262 DOI: 10.1155/2019/8781690] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022]
Abstract
Targeting aberrant metabolism is a promising strategy for inhibiting cancer growth and metastasis. Research is now geared towards investigating the inhibition of glycolysis for anticancer drug development. Betulinic acid (BA) has demonstrated potent anticancer activities in multiple malignancies. However, its regulatory effects on glycolysis and the underlying molecular mechanisms are still unclear. BA inhibited invasion and migration of highly aggressive breast cancer cells. Moreover, BA could suppress aerobic glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and downregulation of aerobic glycolysis-related proteins. In this study, glucose-regulated protein 78 (GRP78) was also identified as the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown abrogated the inhibitory effect of BA on glycolysis. Further studies demonstrated that overexpressed GRP78 activated the endoplasmic reticulum (ER) stress sensor PERK. Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin expression, which resulted in the inhibition of c-Myc-mediated glycolysis. Coimmunoprecipitation assay revealed that BA interrupted the binding between GRP78 and PERK, thereby initiating the glycolysis inhibition cascade. Finally, the lung colonization model validated that BA inhibited breast cancer metastasis in vivo, as well as suppressed the expression of aerobic glycolysis-related proteins. In conclusion, our study not only provided a promising drug for aerobic glycolysis inhibition but also revealed that GRP78 is a novel molecular link between glycolytic metabolism and ER stress during tumor metastasis.
Collapse
|
9
|
Rybtsov SA, Lagarkova MA. Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. BIOCHEMISTRY (MOSCOW) 2019; 84:190-204. [PMID: 31221058 DOI: 10.1134/s0006297919030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.
Collapse
Affiliation(s)
- S A Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4U, United Kingdom.
| | - M A Lagarkova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
10
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
11
|
In vivo and in vitro study of co-expression of LMP1 and Cripto-1 in nasopharyngeal carcinoma. Braz J Otorhinolaryngol 2019; 86:617-625. [PMID: 31375471 PMCID: PMC9422379 DOI: 10.1016/j.bjorl.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/07/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Nasopharyngeal carcinoma, an epithelial-derived malignant tumor which because of its anatomical location and atypical early symptoms, when diagnosed invasion and metastasis often have occurred. This requires a better understanding of the development mechanism, identifying diagnostic markers, and developing new treatment strategies. OBJECTIVE To study the relationship of LMP1 and Cripto-1 in nasopharyngeal carcinoma. METHODS The expression of LMP1 and Cripto-1 in specimens obtained from nasopharyngeal carcinoma patients (n=42) and nasopharyngitis patients (n=22) were examined. The expression of LMP1 and Cripto-1 in LMP1-negative and LMP1-positive (CNE1-LMP1) cells were also examined. RESULTS The expression of LMP1 and Cripto-1 was significantly higher in nasopharyngeal carcinoma than in nasopharyngitis (p<0.05). Their expression in nasopharyngeal carcinoma with metastasis were significantly higher than that without metastasis (p<0.05), which was correlated with TNM staging (p<0.05). High Cripto-1 expression and high proliferation rate were seen in CNE1-LMP1 cells. CONCLUSIONS The expression of LMP1 and Cripto-1 in nasopharyngeal carcinoma is positively related. Their co-expression might contribute to the proliferation and metastasis of nasopharyngeal carcinoma.
Collapse
|
12
|
Fujisawa K, Hara K, Takami T, Okada S, Matsumoto T, Yamamoto N, Sakaida I. Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem Cell Res Ther 2018; 9:93. [PMID: 29625581 PMCID: PMC5889584 DOI: 10.1186/s13287-018-0825-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent cells holding much promise for applications in regenerative medicine. However, with problems such as aging, increases in heteroploid cells, genomic instability, and reduced maintenance of stemness, more stable culturing methods and the production of MSCs with an improved therapeutic effect are desired. Ascorbic acid (AsA), which is a cofactor for a variety of enzymes and has an antioxidant effect, cannot be synthesized by certain animals, including humans. Nevertheless, little attention has been paid to AsA when culturing MSCs. METHODS We analyzed the effect of adding AsA to the culture medium on the proliferation and metabolism of human MSCs by serial analysis of gene expression and metabolome analysis. RESULTS We found that AsA promotes MSC proliferation, and is particularly useful when expanding MSCs isolated from bone marrow. Serial analysis of gene expression and metabolome analysis suggested that, due to HIF1α accumulation caused by decreased activity of the enzymes that use AsA as a coenzyme in cultures without AsA, genes downstream of HIF1α are expressed and there is a conversion to a hypoxia-mimetic metabolism. AsA promotes HIF1α breakdown and activates mitochondria, affecting cell proliferation and metabolism. Comprehensive evaluation of the effects of AsA on various metabolic products in MSCs revealed that AsA increases HIF1α hydroxylase activity, suppressing HIF1a transcription and leading to mitochondrial activation. CONCLUSIONS Adding AsA during MSC expansion leads to more efficient preparation of cells. These are expected to be important findings for the future application of MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kazusa Hara
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Sae Okada
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
13
|
Abdul-Aziz AM, Shafat MS, Sun Y, Marlein CR, Piddock RE, Robinson SD, Edwards DR, Zhou Z, Collins A, Bowles KM, Rushworth SA. HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia. Oncogene 2018; 37:2676-2686. [PMID: 29487418 DOI: 10.1038/s41388-018-0151-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/30/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML.
Collapse
Affiliation(s)
- Amina M Abdul-Aziz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Manar S Shafat
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Yu Sun
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Christopher R Marlein
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Rachel E Piddock
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Stephen D Robinson
- School of Biological Sciences, The University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dylan R Edwards
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Angela Collins
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom.
| |
Collapse
|
14
|
Staquicini DI, D'Angelo S, Ferrara F, Karjalainen K, Sharma G, Smith TL, Tarleton CA, Jaalouk DE, Kuniyasu A, Baze WB, Chaffee BK, Hanley PW, Barnhart KF, Koivunen E, Marchiò S, Sidman RL, Cortes JE, Kantarjian HM, Arap W, Pasqualini R. Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma: preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates. THE PHARMACOGENOMICS JOURNAL 2017; 18:436-443. [PMID: 29205207 DOI: 10.1038/tpj.2017.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/11/2023]
Abstract
Translation of drug candidates into clinical settings requires demonstration of preclinical efficacy and formal toxicology analysis for filling an Investigational New Drug (IND) application with the US Food and Drug Administration (FDA). Here, we investigate the membrane-associated glucose response protein 78 (GRP78) as a therapeutic target in leukemia and lymphoma. We evaluated the efficacy of the GRP78-targeted proapoptotic drug bone metastasis targeting peptidomimetic 78 (BMTP-78), a member of the D(KLAKLAK)2-containing class of agents. BMTP-78 was validated in cells from patients with acute myeloid leukemia and in a panel of human leukemia and lymphoma cell lines, where it induced dose-dependent cytotoxicity in all samples tested. Based on the in vitro efficacy of BMTP-78, we performed formal good laboratory practice toxicology studies in both rodents (mice and rats) and nonhuman primates (cynomolgus and rhesus monkeys). These analyses represent required steps towards an IND application of BMTP-78 for theranostic first-in-human clinical trials.
Collapse
Affiliation(s)
- D I Staquicini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - K Karjalainen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - G Sharma
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - T L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C A Tarleton
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - D E Jaalouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - A Kuniyasu
- Department of Molecular Cell Pharmacology, Sojo University, Kumamoto, Japan
| | - W B Baze
- Department of Veterinary Science and Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - B K Chaffee
- Department of Veterinary Science and Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - P W Hanley
- Department of Veterinary Science and Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - K F Barnhart
- Department of Veterinary Science and Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA.,David H Koch Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Koivunen
- Department of Biological and Environmental Science, The University of Helsinki, Helsinki, Finland.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.,Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Center-FPO, IRCCS, Candiolo, Italy
| | - R L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - J E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of New Mexico School of Medicine, Albuquerque, NM
| | - R Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
15
|
Tiwari A, Wong CS, Nekkanti LP, Deane JA, McDonald C, Jenkin G, Kirkland MA. Impact of Oxygen Levels on Human Hematopoietic Stem and Progenitor Cell Expansion. Stem Cells Dev 2016; 25:1604-1613. [PMID: 27539189 DOI: 10.1089/scd.2016.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxygen levels are an important variable during the in vitro culture of stem cells. There has been increasing interest in the use of low oxygen to maximize proliferation and, in some cases, effect differentiation of stem cell populations. It is generally assumed that the defined pO2 in the incubator reflects the pO2 to which the stem cells are being exposed. However, we demonstrate that the pO2 experienced by cells in static culture can change dramatically during the course of culture as cell numbers increase and as the oxygen utilization by cells exceeds the diffusion of oxygen through the media. Dynamic culture (whereby the cell culture plate is in constant motion) largely eliminates this effect, and a combination of low ambient oxygen and dynamic culture results in a fourfold increase in reconstituting capacity of human hematopoietic stem cells compared with those cultured in static culture at ambient oxygen tension. Cells cultured dynamically at 5% oxygen exhibited the best expansion: 30-fold increase by flow cytometry, 120-fold increase by colony assay, and 11% of human CD45 engraftment in the bone marrow of NOD/SCID mice. To our knowledge, this is the first study to compare individual and combined effects of oxygen and static or dynamic culture on hematopoietic ex vivo expansion. Understanding and controlling the effective oxygen tension experienced by cells may be important in clinical stem cell expansion systems, and these results may have relevance to the interpretation of low oxygen culture studies.
Collapse
Affiliation(s)
- Abhilasha Tiwari
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | | | - Lakshmi P Nekkanti
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | - James A Deane
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia .,3 Department of Obstetrics and Gynaecology, Southern Clinical School, Monash University , Clayton, Australia
| | - Courtney McDonald
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | - Graham Jenkin
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia .,3 Department of Obstetrics and Gynaecology, Southern Clinical School, Monash University , Clayton, Australia
| | | |
Collapse
|
16
|
Yang Y, Cheung HH, Tu J, Miu KK, Chan WY. New insights into the unfolded protein response in stem cells. Oncotarget 2016; 7:54010-54027. [PMID: 27304053 PMCID: PMC5288239 DOI: 10.18632/oncotarget.9833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/29/2016] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive mechanism to increase cell survival under endoplasmic reticulum (ER) stress conditions. The UPR is critical for maintaining cell homeostasis under physiological and pathological conditions. The vital functions of the UPR in development, metabolism and immunity have been demonstrated in several cell types. UPR dysfunction activates a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease and immune disease. Stem cells with the special ability to self-renew and differentiate into various somatic cells have been demonstrated to be present in multiple tissues. These cells are involved in development, tissue renewal and certain disease processes. Although the role and regulation of the UPR in somatic cells has been widely reported, the function of the UPR in stem cells is not fully known, and the roles and functions of the UPR are dependent on the stem cell type. Therefore, in this article, the potential significances of the UPR in stem cells, including embryonic stem cells, tissue stem cells, cancer stem cells and induced pluripotent cells, are comprehensively reviewed. This review aims to provide novel insights regarding the mechanisms associated with stem cell differentiation and cancer pathology.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Hoi Hung Cheung
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - JiaJie Tu
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Kai Kei Miu
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Wai Yee Chan
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| |
Collapse
|
17
|
Folmes CDL, Terzic A. Energy metabolism in the acquisition and maintenance of stemness. Semin Cell Dev Biol 2016; 52:68-75. [PMID: 26868758 DOI: 10.1016/j.semcdb.2016.02.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle--from maintenance and acquisition of stemness to lineage commitment and specification--is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice.
Collapse
Affiliation(s)
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
19
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
20
|
Ramsey H, Zhang Q, Wu MX. Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets 2014; 26:459-66. [PMID: 25025394 DOI: 10.3109/09537104.2014.935315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myelodysplastic syndromes (MDS) are hallmarked by cytopenia and dysplasia of hematopoietic cells, often accompanied by mitochondrial dysfunction and increases of reactive oxygen species (ROS) within affected cells. However, it is not known whether the increase in ROS production is an instigator or a byproduct of the disease. The present investigation shows that mice lacking immediate early responsive gene X-1 (IEX-1) exhibit lineage specific increases in ROS production and abnormal cytology upon radiation in blood cell types commonly identified in MDS. These affected cell lineages chiefly have the bone marrow as a primary site of differentiation and maturation, while cells with extramedullary differentiation and maturation like B- and T-cells remain unaffected. Increased ROS production is likely to contribute significantly to irradiation-induced thrombocytopenia in the absence of IEX-1 as demonstrated by effective reversal of the disorder after mitoquinone (MitoQ) treatment, a mitochondria-specific antioxidant. MitoQ reduced intracellular ROS production within megakaryocytes and platelets. It also normalized mitochondrial membrane potential and superoxide production in platelets in irradiated, IEX-1 deficient mice. The lineage-specific effects of mitochondrial ROS may help us understand the etiology of thrombocytopenia in association with MDS in a subgroup of the patients.
Collapse
Affiliation(s)
- Haley Ramsey
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS) , Boston , MA and
| | | | | |
Collapse
|
21
|
Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014; 15:243-56. [PMID: 24651542 DOI: 10.1038/nrm3772] [Citation(s) in RCA: 779] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A distinctive feature of stem cells is their capacity to self-renew to maintain pluripotency. Studies of genetically-engineered mouse models and recent advances in metabolomic analysis, particularly in haematopoietic stem cells, have deepened our understanding of the contribution made by metabolic cues to the regulation of stem cell self-renewal. Many types of stem cells heavily rely on anaerobic glycolysis, and stem cell function is also regulated by bioenergetic signalling, the AKT-mTOR pathway, Gln metabolism and fatty acid metabolism. As maintenance of a stem cell pool requires a finely-tuned balance between self-renewal and differentiation, investigations into the molecular mechanisms and metabolic pathways underlying these decisions hold great therapeutic promise.
Collapse
|
22
|
Heideman MR, Lancini C, Proost N, Yanover E, Jacobs H, Dannenberg JH. Sin3a-associated Hdac1 and Hdac2 are essential for hematopoietic stem cell homeostasis and contribute differentially to hematopoiesis. Haematologica 2014; 99:1292-303. [PMID: 24763403 DOI: 10.3324/haematol.2013.092643] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Class I histone deacetylases are critical regulators of gene transcription by erasing lysine acetylation. Targeting histone deacetylases using relative non-specific small molecule inhibitors is of major interest in the treatment of cancer, neurological disorders and acquired immune deficiency syndrome. Harnessing the therapeutic potential of histone deacetylase inhibitors requires full knowledge of individual histone deacetylases in vivo. As hematologic malignancies show increased sensitivity towards histone deacetylase inhibitors we targeted deletion of class I Hdac1 and Hdac2 to hematopoietic cell lineages. Here, we show that Hdac1 and Hdac2 together control hematopoietic stem cell homeostasis, in a cell-autonomous fashion. Simultaneous loss of Hdac1 and Hdac2 resulted in loss of hematopoietic stem cells and consequently bone marrow failure. Bone-marrow-specific deletion of Sin3a, a major Hdac1/2 co-repressor, phenocopied loss of Hdac1 and Hdac2 indicating that Sin3a-associated HDAC1/2-activity is essential for hematopoietic stem cell homeostasis. Although Hdac1 and Hdac2 show compensatory and overlapping functions in hematopoiesis, mice expressing mono-allelic Hdac1 or Hdac2 revealed that Hdac1 and Hdac2 contribute differently to the development of specific hematopoietic lineages.
Collapse
Affiliation(s)
- Marinus R Heideman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cesare Lancini
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Natalie Proost
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eva Yanover
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan-Hermen Dannenberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Karasawa H, Castro NP, Rangel MC, Salomon DS. The Role of Cripto‐1 in Cancer and Cancer Stem Cells. CANCER STEM CELLS 2014:331-345. [DOI: 10.1002/9781118356203.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Age-Dependent Association between Protein Expression of the Embryonic Stem Cell Marker Cripto-1 and Survival of Glioblastoma Patients. Transl Oncol 2013; 6:732-41. [PMID: 24466376 DOI: 10.1593/tlo.13427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/26/2022] Open
Abstract
Exploring the re-emergence of embryonic signaling pathways may reveal important information for cancer biology. Nodal is a transforming growth factor-β (TGF-β)-related morphogen that plays a critical role during embryonic development. Nodal signaling is regulated by the Cripto-1 co-receptor and another TGF-β member, Lefty. Although these molecules are poorly detected in differentiated tissues, they have been found in different human cancers. Poor prognosis of glioblastomas justifies the search for novel signaling pathways that can be exploited as potential therapeutic targets. Because our intracranial glioblastoma rat xenograft model has revealed importance of gene ontology categories related to development and differentiation, we hypothesized that increased activity of Nodal signaling could be found in glioblastomas. We examined the gene expressions of Nodal, Cripto-1, and Lefty in microarrays of invasive and angiogenic xenograft samples developed from four patients with glioblastoma. Protein expression was evaluated by immunohistochemistry in 199 primary glioblastomas, and expression levels were analyzed for detection of correlations with available clinical information. Gene expression of Nodal, Lefty, and Cripto-1 was detected in the glioblastoma xenografts. Most patient samples showed significant levels of Cripto-1 detected by immunohistochemistry, whereas only weak to moderate levels were detected for Nodal and Lefty. Most importantly, the higher Cripto-1 scores were associated with shorter survival in a subset of younger patients. These findings suggest for the first time that Cripto-1, an important molecule in developmental biology, may represent a novel prognostic marker and therapeutic target in categories of younger patients with glioblastoma.
Collapse
|
25
|
Wielscher M, Liou W, Pulverer W, Singer CF, Rappaport-Fuerhauser C, Kandioler D, Egger G, Weinhäusel A. Cytosine 5-Hydroxymethylation of the LZTS1 Gene Is Reduced in Breast Cancer. Transl Oncol 2013; 6:715-21. [PMID: 24466374 PMCID: PMC3890706 DOI: 10.1593/tlo.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5'LZTS1 fragments showed significantly lower (fold change of 1.61-6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student's t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student's t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.
Collapse
Affiliation(s)
- Matthias Wielscher
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Willy Liou
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Walter Pulverer
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|